REPORT
INTERIM REPORT
FORMER SOLIDS MIXING AREA CLOSURE
US EPA ID IND 016360265
ATEC PROJECT NUMBER 8-3202

US EPA RECORDS CENTER REGION 5

August 10, 1990 File 8-3202

Mr. John Murphy
American Chemical Service

#### **INTERIM REPORT**

Solids Mixing Area Closure Griffith, Indiana



1501 East Main Street Griffith, Indiana 46319-0270 [219] 924-6690, FAX # [312] 375-8649

August 10, 1990 File 8-3202

Mr. Mitch Mosier Indiana Department of Environmental Management Plan Review and Permit Section P.O. Box 6015 Indianapolis, IN 46206-6015 Solid & Hazardous Waste Site Assessments
Remedial Design & Construction
Underground Tank Management
Asbestos Surveys & Analysis
Hydrogeologic Investigations & Monitoring
Analytical Testing/Chemistry
Industrial Hygiene/Hazard Communication
Environmental Audits & Permitting
Exploratory Drilling & Monitoring Wells

#### INTERIM REPORT

Former Solids Mixing Area Closure U.S. EPA ID IND 016360265

Dear Mr. Mosier:

Prior to initiating closure activities at the above referenced site, a sampling and analysis program has been performed in general accordance with the closure plan. The purpose of this report is to present the initial sampling and analysis results to IDEM, which shows ATEC's independent estimate of impacted soil quantities and concrete removal procedures.

Based on the results of the initial sampling and analysis program, we are recommending that the concrete in the mixing area be removed and disposed, and that impacted soils as delineated in this report also be removed and disposed. In order to keep to the schedule presented in the closure plan, removal should begin no later than August 17, 1990. If you have questions or comments regarding this project, please respond before August 17, 1990.

Very truly yours,

ATEC Associates, Inc.

BY:

Tris A. Miles

Environmental Manager

BY:

John W. Weaver, II Vice President

#### TABLE OF CONTENTS

| 1.0 Introduction                                                 | 2 |
|------------------------------------------------------------------|---|
| 2.0 Sampling Procedures                                          | 2 |
| 3.0 Results                                                      | 3 |
| 4.0 Recommendations                                              | 4 |
| APPENDICES                                                       |   |
| Appendix A - Calculations                                        |   |
| Appendix B - Background Concentrations of Metals in Soils        |   |
| Appendix C - Analytical Data                                     |   |
| FIGURES                                                          |   |
| Figure 1 - Background Sample Locations                           |   |
| Figures 2 to 6 - Concentrations Versus Sample Locations          |   |
| Figure 7 - Soil Removal Plan                                     |   |
| Figures 8 to 13 - Contour Intervals and Concentration Levels for |   |
| Barium and Lead                                                  |   |
| TABLE                                                            |   |
| A A BAT STAT                                                     |   |

Table 3.1 - Clean-up Objectives

#### 1.0 INTRODUCTION

The study area is the former solids mixing area at American Chemical Service's (ACS) Griffith, Indiana facility. Earlier studies have suggested that the concrete pad and surrounding and underlying soils may contain elevated levels of heavy metals. The approved Closure Plan for the Former Solids Mixing Area, dated June 12, 1990, calls for the decontamination or removal of the concrete, and the removal and disposal of nearby soils containing significantly elevated levels of heavy metals (background mean plus one standard deviation).

The purpose of this report is to present the sampling and analysis results to IDEM for review. ATEC has estimated the amount of soil and concrete to be removed based on the initial sampling and analysis results in accordance with the closure plan.

#### 2.0 SAMPLING PROCEDURES

Background samples were collected from five locations within the approved zone (Figure 1). The first step in the collection of the samples was to dig a small test pit using a backhoe. Approximately two inches of exposed soil was scraped from one wall of the pit using a clean stainless steel tool. Samples were collected at specified intervals from the newly exposed surface using another clean stainless steel tool. The samples were placed in new 500 ml plastic jars, labeled with a unique number, and documented by chain-of-custody protocol. To reduce lag time caused by waiting for analytical results, samples from all soil levels and locations specified by the closure plan in and around the solids mixing area were collected during the same event. Where possible, stainless steel bucket augers were used. If the soils at a given location were unsuitable for augering, the backhoe and spoon method was used.

Results for the background samples were statistically treated to determine clean-up objectives. The mean and standard deviation of the concentration of each metal at each soil level were computed, and added to produce the clean-up objective. See the Calculations appendix for details.

Analytical results for the samples collected in and around the solids mixing area were compared to the clean-up objectives. Additional samples were selected for analysis in accordance with the closure plan.

#### 3.0 RESULTS

#### 3.1 Background Levels

No detectable levels of arsenic, selenium, mercury or silver were present in any of the background samples. The clean-up objective for these metals at all locations is therefore set at the specified quantitation level.

There was no observable trend in the concentrations of barium, cadmium, chromium, nickel and lead. The levels did not increase or decrease consistently with depth. Table 3.1 shows the clean-up objectives for each soil level. Concentrations in discrete samples are presented in the Analytical Data Appendix.

#### 3.2 Solids Mixing Area Samples

Concentrations of metals above clean-up levels were present in several of the samples collected in and around the solids mixing area. Lead, chromium and cadmium appear to be the most frequently encountered metals whose presence may be attributable to past operations in the solids mixing area.

Barium was identified at levels above the computed clean-up objective at many locations. Barium is a common, naturally occurring element in the area of the subject site. It was present in nearly all of the background samples. The distribution of barium in the mixing area did not follow a discernable pattern. Elevated barium concentrations were frequently detected in samples where no other metals were detected.

#### 3.3 Extraction Procedure Toxicity (E.P. - TOX) Testing

In accordance with the closure plan, splits of samples found to contain metals concentrations above clean-up levels were analyzed via E.P. TOX methodology. E.P. TOX concentrations for all metals in all samples were below quantitation limits. A complete set of results is in the laboratory data appendix.

A core sample of the concrete floor of the mixing area was also analyzed for E.P. TOX metals. No metals were present above quantitation levels in this sample.

#### 4.0 RECOMMENDATIONS

#### 4.1 Concrete

The closure plan allows for either decontamination or removal of the concrete pad and sidewalls. Since elevated levels of metals were detected in soils underlying the pad, removal of the pad will be necessary to access the soil. We believe that removal is preferable to decontamination for economic and health and safety reasons as well.

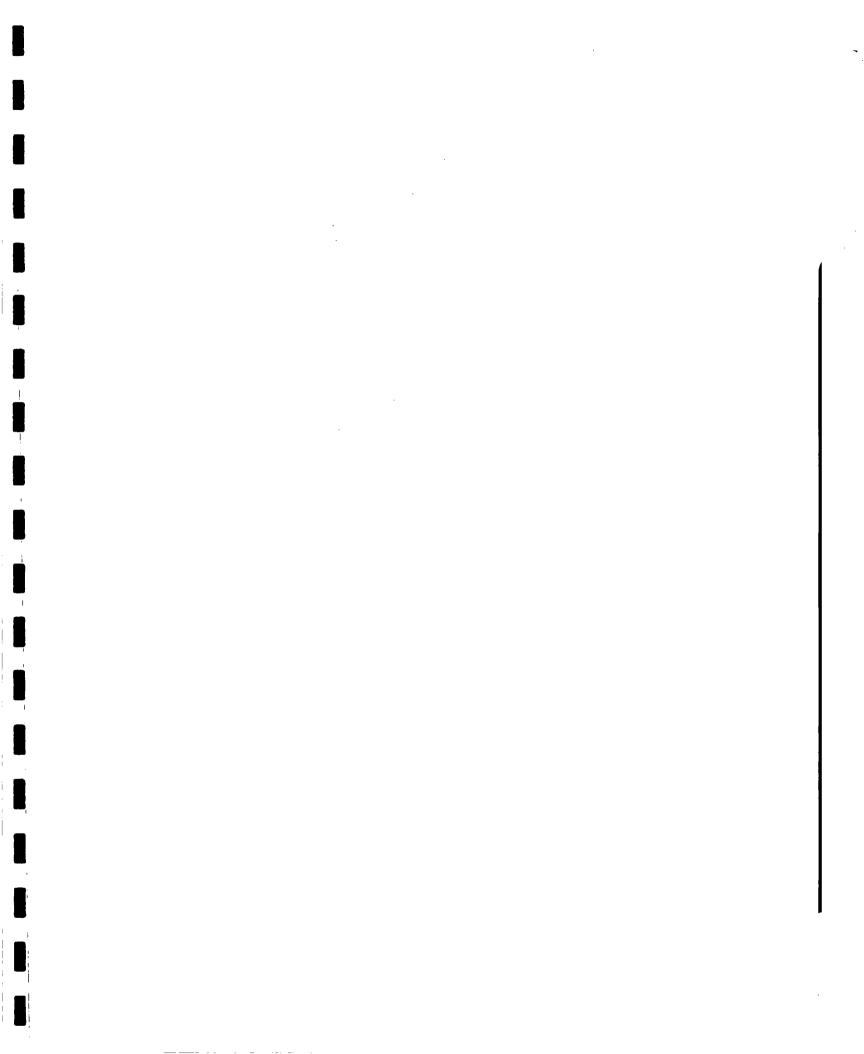
We have learned from permitted landfills that concrete pieces with dimensions less than four feet are acceptable. The concrete could be broken into pieces of this size easily, and the process would generate little or no airborne dust.

If significant quantities of dust is observed during the concrete sizing operation, dust control by water application is recommended. The amount of water applied would be just enough to control the dust. No runoff is anticipated.

#### **4.2 Soils**

Analytical results indicate that concentrations of metals (barium, cadmium, chromium, lead and nickel) were above the clean-up level mainly above a depth of two feet below grade. The sampling indicates that a few locations had slightly elevated lead and chromium levels below a depth of two feet. These metals will be used as indicators in the excavation of soil in the former solids mixing area.

It is our opinion that the levels of barium identified in samples collected at the solids mixing area are not a result of activities in that area, and that barium is not a true indicator of contamination at the solids mixing area. Available literature indicates that barium concentrations in soils in the continental United States range from 15 to 5,000 parts per million (ppm)<sup>1</sup>. Background data for barium collected by ATEC at several sites in the region of the subject site indicates an average concentration of 67.9 ppm (see Appendix B).


Averaging the barium concentration in all samples from the mixing area yields a mean concentration of 30.92 ppm, compared to a mean concentration of 26.89 ppm for all background samples. Analysis of those samples containing the highest concentrations of total barium via the extraction procedure toxicity test (EPA SW 846 Methods 6000 and 7000 Series) showed that no detectable levels of extractable barium are present.

The occurrence of barium in the mixing area does not appear to follow any pattern. If the barium was traceable to past activities at the mixing area, concentrations would be expected to be higher in the upper soils. Plotting barium concentrations versus sample locations produces cross sections (Figures 2 through 6) which show that this is not the case.

We believe that barium occurs naturally in site soils. The variation in concentrations between sampling points is likely due to variations in the types of fill material used to bring the site up to its present grade.

Concentrations of metals of concern exceeding the clean-up objectives occur most frequently in the depth interval of 0 to 24 inches in the southern half of the mixing area. The southern half of the controlled work zone also evidenced elevated levels of lead. We believe that the top two feet of soil should be excavated below and to the south of the mixing area. One foot of soil should be excavated in the north portion of the mixing area (see Figure 7). After the excavation of soil is complete, confirmatory soil samples will be obtained to verify that clean-up objectives have been met. If clean-up objectives are not obtained, an additional six inches of soil will be removed. Confirmatory soil samples will again be taken and analyzed.

<sup>&</sup>lt;sup>1</sup> McElroy, et. al., 1976, Heavy Metal Concentrations in Surficial Materials in the United States



## APPENDIX A CALCULATIONS

#### **CALCULATIONS**

| BORING NUMBER | BARIUM MEAN VALUE (PPM) |
|---------------|-------------------------|
| B-1           | 15                      |
| B-2           | 35.06                   |
| B-3           | 41                      |
| B-4           | 80.1                    |
| B-5           | 64                      |
| B-6           | 70.7                    |
| B-7           | 22                      |
| B-8           | 12.2                    |
| B-9           | 12                      |
| B-10          | 15.3                    |
| B-11          | 12.7                    |
| B-12          | 13.22                   |
| B-13          |                         |
| B-14          | <b></b>                 |
| B-15          |                         |
| B-16          | 11                      |
| B-17          | <b></b>                 |
| B-18          |                         |
| B-19          | 45.5                    |
| B-20          | 41.57                   |
| B-21          | 30                      |
| B-22          | 19.55                   |
| B-23          | 49                      |
| B-24          | 23                      |
| B-25          | 26.68                   |
| B-26          | 23.43                   |
| B-27          | 17.15                   |
|               |                         |
|               |                         |

680.16 = 30.92 22

30.92 MEAN BARIUM CONCENTRATION IN MIXING AREA

Sample Date ACS

Date 8-1-90

Monitoring Well \_\_S6

ву 🥂 😂

Analysis BARIDIA

Checked By

Measurments:

1) 12

3) <u>6:5</u>

4) <5

D.L. = \_\_\_\_\_ (Detection Limit)

s= 10.06 (Variance of measurements above limit of detection)

X' = 10.17 (Mean of measurements above limit of detection)

 $T = \frac{(.38)}{(x'-D.L.)}$ 

h= 0.25 (Proportion of values below detection limit)

gamma= <u>6.38716</u>

X= \_\_\_\_\_\_\_ [X=X'-(gamma)\*(X'-D.L.)]

 $s = \frac{2}{15.52} \left[ s = s + (gamma) * (X'-D.L.) \right]$ 

Analysis BARNM

Checked By \_\_\_\_\_

Measurments:

$$X' = 6.73$$
 (Mean of measurements above limit of detection)

$$T = \frac{1.65}{1.65} [T = (S/(X'-D.L.))]$$

Sample Date ACS
Monitoring Well 54

BY R. STRIMBU

Analysis BARIUM

Checked By

Measurments:

1) <5

3) \_\_\_\_\_\_

2) <5

4) <u>6.2</u> 5) <u>5.4</u>

D.L.= \_\_\_\_\_(Detection Limit)

2' 0.32 (Variance of measurements above limit of detection)

 $X' = \frac{6.8}{6}$  (Mean of measurements above limit of detection)

 $T = \frac{0.5}{100} [T = (s'/(x'-D.L.))]$ 

h= 045 (Proportion of values below detection limit)

gamma= 1.221

 $X = \frac{4.74}{[X=X'-(gamma)*(X'-D.L.)]}$ 

2 S= 1.16 [S=S +(gamma)\*(X'-D.L.)]

Sample Date / Sample Date

Date \_\_\_\_\_

Analysis She De

Checked By \_\_\_\_\_

D.L.= (Detection Limit) () 45

2'
S= \_\_\_\_(Variance of measurements above limit of detection)

 $X' = \frac{60.2}{}$  (Mean of measurements above limit of detection)

 $T = \frac{2'}{(X'-D.L.)}$ 

h= \_\_\_\_\_(Proportion of values below detection limit)

X= \_\_\_\_[X=X'-(gamma)\*(X'-D.L.)]

2 S= [S=S +(gamma)\*(X'-D.L.)]

Analysis Fat Just

Checked By

Measurments:

$$X' = \frac{69.3}{69.3}$$
 (Mean of measurements above limit of detection)

$$T = \frac{2'}{(X'-D.L.)}$$

Sample Date  $\frac{ACS}{8-2G}$ Monitoring Well  $\frac{8-2G}{8}$ 

Date <u>2/1-98</u>

By <u>RTS</u>

Analysis BAROUN

Checked By

Measurments:

1) \_\_\_\_\_\_

3) \_\_\_\_\_

2) \_6.2

4) <u>5.3</u>

5) <5

D.L.= \_\_\_\_\_(Detection Limit)

2' 5/33 (Variance of measurements above limit of detection)

 $X' = \frac{33.12}{}$  (Mean of measurements above limit of detection)

T = 3.33 [ T = (S/(X'-D.L.))]

h= (Proportion of values below detection limit)

gamma= <u>177 71</u>

X= \_\_\_\_\_[X=X'-(gamma)\*(X'-D.L.)]

2 S= 2,05 (S=S+(gamma)\*(X'-D.L.)]

Analysis 64000

Checked By \_\_\_\_\_

Measurments:

2' S= \_\_\_\_\_\_\_(Variance of measurements above limit of detection)

X' = 38.07 (Mean of measurements above limit of detection)

$$T = \frac{2'}{(X'-D.L.)}$$

h= 0.17 (Proportion of values below detection limit)

gamma= <u>\*\*\*\*\*\*\*</u>

$$s = \frac{2}{2.522.60} [s = s + (gamma) * (X' - D.L.)^{2}]$$

Sample Date \_ Monitoring Well \_\_\_\_\_\_55\_\_\_\_

By AReeve

Analysis Barum

Checked By

Measurments:

1) \_ < 5

2) 9.3

4) \_ 5 4

D.L. = 5 (Detection Limit)

2'
S= 7.61 (Variance of measurements above limit of detection)

 $X' = \frac{7.35}{}$  (Mean of measurements above limit of detection)

$$T = \frac{2!}{(X'-D.L.)}$$

h= \_\_\_\_\_ (Proportion of values below detection limit)

gamma= 1.095

Sample Date \_\_\_\_\_

Date 7/11/90

Monitoring Well 54

By A, 2.000e

Analysis Barrom

Checked By

Measurments:

1) \_\_\_\_<5\_\_\_

3) \_\_\_ < 5

2) \_ < 5

4) \_\_\_6.2

D.L.= 5 (Detection Limit)

2'
S= \_\_\_\_\_(Variance of measurements above limit of detection)

X' = 62 (Mean of measurements above limit of detection)

h= \_\_\_\_\_\_\_(Proportion of values below detection limit)

gamma= 1.569

$$X = \frac{2.76}{1.00} [X = X' - (gamma) * (X' - D.L.)]$$

$$s = \frac{2}{2.69} \left[ s = s + (gamma) * (X'-D.L.)^{2} \right]$$

Date 7/.1/90 Sample Date \_\_\_\_ By A. Recoe Monitoring Well 55 Analysis <u>Cadmium</u> Checked By \_\_\_\_\_ 3) \_\_\_\_< 1) \_ < \ Measurments: 4) 1.0 2) \_\_\_ < \ D.L.= (Detection Limit) 2'
S= \_\_\_\_\_(Variance of measurements above limit of detection) X'= \_\_\_\_(Mean of measurements above limit of detection)  $T = \frac{2'}{(X'-D.L.)}$ h= .75 (Proportion of values below detection limit) gamma= 1.669

X= \_\_\_\_[X=X'-(gamma)\*(X'-D.L.)]

2 S= \_\_\_\_\_(S=S +(gamma)\*(X'-D.L.) ]

| Sample Date      |                       | Date <u>7/1/170</u>                    |
|------------------|-----------------------|----------------------------------------|
| Monitoring Well  | 54                    | By AReave                              |
| Analysis         | <u>Cadmion</u> Checke | ed By                                  |
| Measurments:     | 1)                    | 3)                                     |
|                  | 2)                    | 4)                                     |
|                  |                       | ·                                      |
| D.L.=            | (Detection L:         | imit)                                  |
| 2 <b>'</b><br>S= | (Variance of          | measurements above limit of detection) |
| X * =            | (Mean of meas         | surements above limit of detection)    |
| Т=               | [ T=(S /(X'           | -D.L.))]                               |
| h=               | (Proportion of        | of values below detection limit)       |
| gamma=           | <u> 1.869</u>         |                                        |
| X=               | [X=X'-(gamma)         | *(X'-D.L.)]                            |
| 2                | 2 2                   | 2<br>0+(v! p:r ) 1                     |

Sample Date \_\_\_\_\_

Date 7/11 90

Monitoring Well 51

By \_ A. R 20 18

Analysis Chromom

Checked By \_\_\_\_\_

Measurments:

1) 67

2) \_ 7 2\_\_\_

4) < 5

D.L. = \_\_\_\_\_\_ (Detection Limit)

2' S= <u>.163</u> (Variance of measurements above limit of detection)

 $X' = \frac{(6.77)}{(Mean of measurements above limit of detection)}$ 

$$T = \frac{2'}{.052} [T = (S/(X'-D.L.))]$$

h= .25 (Proportion of values below detection limit)

gamma= \_.32828

Sample Date \_\_\_\_\_

Date 7/1/190

Monitoring Well 55

By A Reeve

Analysis Nickel

Checked By \_\_\_\_\_

Measurments:

1) \_\_\_\_<5\_\_\_

3) \_\_\_\_\_ 45\_\_\_

2) <5

D.L. = 5 (Detection Limit)

S= \_\_\_\_\_(Variance of measurements above limit of detection)

X' = 74 (Mean of measurements above limit of detection)

h= <u>75</u> (Proportion of values below detection limit)

gamma | 869

X = 2.91 [X = X' - (gamma) \* (X' - D.L.)]

Sample Date \_\_\_\_\_

Date 7/11/90

Monitoring Well 54

By A Reeve

Analysis Nickel

Checked By \_\_\_\_\_

Measurments:

3) \_ < 5

2) < 5

4) \_ < 5

D.L.= 5 (Detection Limit)

2'
S= \_\_\_\_\_(Variance of measurements above limit of detection)

 $X' = \frac{7.5}{}$  (Mean of measurements above limit of detection)

$$T = \frac{2!}{(X'-D.L.)}$$

h= .75 (Proportion of values below detection limit)

gamma= 1.869

$$X = 2.83 [X = X' - (gamma) * (X' - D.L.)]$$

$$s = \frac{2}{11.68} \left[ s = s + (gamma) * (X' - D.L.) \right]$$

Sample Date \_\_\_\_

Monitoring Well <u>53</u>

By A. Reove

Analysis Nickel Checked By

Measurments:

1) \_\_\_\_\_\_

D.L.= 5 (Detection Limit)

2'
S= \_\_\_\_\_(Variance of measurements above limit of detection)

 $X' = \frac{72}{Mean}$  (Mean of measurements above limit of detection)

 $T = \frac{2}{(X'-D.L.)}$ 

h= \_\_\_\_\_(Proportion of values below detection limit)

gamma 1.869

 $X = \frac{3.09}{100} [X = X' - (gamma) * (X' - D.L.)]$ 

 $s = \frac{2}{S} = \frac{9.05}{[S=S + (gamma)*(X'-D.L.)]}$ 

Sample Date \_\_\_\_\_

Date 7/11/96

Monitoring Well 52

By A Recue

Analysis Nickel Checked By \_\_\_\_\_

Measurments:

1) \_<5

2) \_\_\_<5

D.L. = \_\_\_\_\_ (Detection Limit)

2' C (Variance of measurements above limit of detection)

X' = 22 (Mean of measurements above limit of detection)

$$T = \frac{2'}{T = (S'/(X'-D.L.))}$$

h= .75 (Proportion of values below detection limit)

gamma= 1.869

$$X = \frac{-977}{[X=X'-(gamma)*(X'-D.L.)]}$$

$$s = \frac{2}{540.1} \left[ s = s + (gamma) * (X'-D.L.) \right]$$

Sample Date \_\_\_\_\_

Date 7/11/90

Monitoring Well 5

By A Reeve

Analysis Mickel

Checked By \_\_\_\_

- Measurments: 1) \_\_\_\_\_\_\_
- 3) \_\_<5\_\_
- 2) \_ < 5

D.L.= 5 (Detection Limit)

2'
S= \_\_\_\_\_\_(Variance of measurements above limit of detection)

X' = 56 (Mean of measurements above limit of detection)

$$T = \frac{2'}{(X'-D.L.)}$$

h= 75 (Proportion of values below detection limit)

gamma= 1.869

$$X = 448 [X = X' - (gamma) * (X' - D.L.)]$$

$$s = \frac{2}{673} [s = s + (gamma) * (x' - D.L.)]$$

Sample Date \_\_\_\_\_

Date 7/11/90

Monitoring Well 55

By A. Reeve

Analysis Lead

Checked By \_\_\_\_\_

Measurments:

1) \_\_\_\_<5\_\_\_

3) 5.6

2) \_\_\_<5

4) \_\_\_\_73\_\_

D.L.= 5 (Detection Limit)

2'
S= | (Variance of measurements above limit of detection)

X' = 645 (Mean of measurements above limit of detection)

$$T = .684 [ T = (S/(X'-D.L.))]$$

h= \_\_\_\_\_(Proportion of values below detection limit)

gamma \_ 1.027

$$X = \frac{1.96}{(x=X'-(gamma)*(X'-D.L.))}$$

$$\frac{2}{s} = \frac{3.60}{5} = \frac{22'}{(s=s)*(x'-D.L.)}$$

Sample Date \_\_\_\_\_

Date 7/11/90

Monitoring Well 53

By A Reeve

Analysis Lead Checked By \_\_\_\_\_

Measurments:

1) \_ <5

2) \_ < 5

4) \_ 5.7

D.L. = 5 (Detection Limit)

2'
S= \_\_\_\_\_(Variance of measurements above limit of detection)

 $X' = \frac{5.7}{}$  (Mean of measurements above limit of detection)

T = C [T = (S/(X'-D.L.))]

h= 75 (Proportion of values below detection limit)

gamma= 1.869

 $X = \frac{3.69}{9} [X = X' - (gamma) * (X' - D.L.)]$ 

2 S= <u>'92</u> [S=S +(gamma)\*(X'-D.L.)]

Sample Date \_\_\_\_\_

Monitoring Well \_ S2\_

By AR

Analysis Lead

Checked By

Measurments:

1) \_120

3) 7.3

2) \_ < 5

4) \_ < 5

D.L. = \_\_\_\_\_ (Detection Limit)

s = 635.6 (Variance of measurements above limit of detection)

X' = 63.7 (Mean of measurements above limit of detection)

$$T = \frac{2'}{(X'-D.L.)}$$

h= \_\_\_\_\_\_(Proportion of values below detection limit)

gamma= <u>18881</u>

$$X = \frac{11.6}{[X=X'-(gamma)*(X'-D.L.)]}$$

$$s = \frac{3696}{5} [s = s + (gamma) * (X' - D.L.)]$$

Sample Date \_\_\_\_\_

Date 7/10190

Monitoring Well 52

By A Recue

Analysis Chromium

Checked By \_\_\_\_\_

Measurments:

1) \_\_\_\_<5

3) \_ < 5

2) \_ < 5

4) \_\_\_\_\_

D.L.= 5 (Detection Limit)

2'
S= \_\_\_\_\_(Variance of measurements above limit of detection)

 $X' = \frac{15}{15}$  (Mean of measurements above limit of detection)

 $T = \frac{0}{(X'-D.L.)}$ 

h= .7.5 (Proportion of values below detection limit)

gamma = 1.869

 $X = \frac{-3}{69} [X = X' - (gamma) * (X' - D.L.)]$ 

 $\frac{2}{S = 186.9} \left[ S = S + (gamma) * (X' - D.L.) \right]$ 

non-normal

Sample Date \_\_\_\_\_

Monitoring Well 52

By A Reeve

Analysis Cd

Checked By \_\_\_\_\_

Measurments:

3) \_ < \

$$X' = \frac{2 \cdot 1}{2 \cdot 1}$$
 (Mean of measurements above limit of detection)

$$X = \frac{3045}{3} [X = X' - (gamma) * (X' - D.L.)]$$

## APPENDIX B BACKGROUND CONCENTRATIONS OF METALS IN SOILS

# BACKGROUND CONCENTRATIONS OF METALS IN SOLS EPA/600/2-86/066 August 1986

RECLAMATION AND REDEVELOPMENT
OF CONTAMINATED LAND:
VOLUME I. U.S. CASE STUDIES ... CASE STUDIES

G. L. Kingsbury and R. M. Ray
Research Triangle Institute
Research Triangle Park, NC 27709

A CONTRACTOR OF THE STATE OF TH Application of the second section of

Contract No. 68-03-3149, 23-1

Project Officer

Naomi P. Barkley Land Pollution Control Division Hazardous Waste Engineering Research Laboratory Cincinnati, Ohio 345268

HAZARDOUS WASTE ENGINEERING RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO #45268 👭 🔡

### TABLE B-16. REPORTED LEVELS OF SELECTED ELEMENTS IN SOILS

| Element    | Concentration in soil (µg/g)                                                                                                    | Reference          |
|------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Arsenic    | 5 average<br>6 common<br>0.1-40 range<br>May reach several hundred ppm in soils<br>overlying deposits of sulfide ores           | 1 2 2              |
| Aluminum j | Ubiquitous in soil: as high as 40,000 ppm<br>in some Great Plains soils<br>Availability extremely low in soils with<br>pH > 5.0 |                    |
| Boron      | 10 common<br>2-100 range                                                                                                        | 2                  |
| Cadmium    | 0.06 common<br>0.01-7 range                                                                                                     | 2,4 <u>3</u>       |
|            |                                                                                                                                 |                    |
| Chromium   | 100 common<br>5-3,000 range<br>50-170<br>1,000 in serpentine soils                                                              |                    |
| Cobalt     | 8 common<br>1-40 range<br><1 extractable                                                                                        | 2<br>2<br>3        |
| Copper     | 20 common 2-100 range 0.2-3.2 extractable                                                                                       | 2 2 3              |
| Iron       | 20,000-50,000<br>1-100 extractable                                                                                              | 3                  |
| Lead       | 10-30<br>10 common<br>2-200 range<br>60 and 275reported mean rural levels                                                       | 3,5<br>2<br>2<br>6 |
| Manganese  | 850 common<br>100-4,000 range<br>1-47 available                                                                                 | 2<br>2<br>3        |
|            | (Continued)                                                                                                                     |                    |

## TABLE B-16. (Continued)

STATE OF THE PROPERTY OF THE PARTY OF AND THE RESIDENCE OF THE PARTY OF THE PARTY

| Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Concentration in soil Reference                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Hercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co. a. A. S. Convenile in western U.S.;              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mean 0.083 0.147 mean for eastern U.S.               |
| Molybdenum Wolsenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 common 2 2 0.2-5 range 3                           |
| Topic State in the state of the | Montana soils  Flavated levels may occur in alkaline |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50113 WICH HIGH WOOD 2                               |
| Nickel Mickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40 common 2<br>10-1,000 range 7                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-40                                                 |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5 common<br>0.1-2.0 range                          |
| - Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 common 20-500 range                              |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 common 2<br>10-300 range 8<br>5,000               |

NO BUILD STREET



# Hazardous Waste Research Locator

United States
Environmental Protection
Apency

Hazardous Wests Engineering Research Laboratory Cinchneti, OH 45268

EPA/600/9-87/007

Research and Development

Davis 34 051 50 Mars

P A6

#### Technical Literature

1542 1.1 ications

18. Guidance Manual on Overtopping Control Techniques for Hazardous Waste Impour ments EPA 600/2-86-012 PB86-164168

Carolifet (Alexandra) (Co.)

Drum Handling Practices at Hazardoue Waste Sites EPA 600/2-86-013 PB86-165362

20. Interim Protocol for Olving Operations in Contaminated Water EPA 600/2-88-130 PB86-128022

21. Reclamation and Redevelopment of Contaminated Land; Volume 1, U.S. Case Studies EPA 500/2-85-065 PB87-142121

22. Summary of On-Scene Coordinator Protocol for Contaminated Underwater Operati EPA 600/D-84-040 PB84-149707

RCRA Resource Conservation and Recovery Act

re 9/1/58 Compendeur of Surveyund ist Dientes Called 7/26/88 By dhe

Evaluating Cover Bystams for Solid and Hazardous Waste 94170 3 487.46 SW-867 GPO 055-000-00228-2 PB 87-154.674170 3 487.46

8. Guide to Disposal of Chamically Stabilized and Solidified Westes

8W-874 GPO 008-000-00232-1

9. Solld Waste Lasching Procedure SW-924 OSW

11. Hydrologic Evaluation of Landfill Performance (HELP) Model

Volume I: Users Manuel EPA 530/SW-84-009 ORD Volume II: Documentation EPA 530/SW-84-010 ORD Model Version 1.0 - Model Simulation (Includes above 2 volumes) EPA/DF-85-001 P885-100725/REB

12. Technical Guidance Document, Construction Quality Assurance for Hazardous Wast Land Disposal Facilities

EPA 630/5W-86-031 ORD 13. Characterization of PCB Transformer/Capacitor Fluids and Correlation with PCDD's and PDCF's in Soot

EPA 600/2-87-004 PB87-145785 14. Use of Lined Pits for Disposal of Dituts Peaticide Waste

EPA 600/2-87-003 PB87-145926 15. Technical Resource Document: Treatment Technologies for Solvent Containing Wast. EPA 600/2-86-095 PB87-129821

16. Technical Resource Document: Treatment Technologies for Dioxin Containing Wastes EPA 600/2-86-098 P887-110613

17. Alternative Technologies for Managing Solvent Wastes

EPA 600/5-86-040 PB86-195858

18. Treatment Technologies for Corrosive Hazardous Westes EPA 600/5-86-108 PB86-224565

19. Hazardous Weste Thatment Technology EPA 600/d-86-006 PB86-146539

20. Microbial Decomposition of Chloringted Arometic Compounds EPA 600/2-86/090 ORD

21. PCB Sediment Decontamination Technical/Economic Assessment of Selected Alternative Treatments EPA 600/2-86-112 P887-133112

22. Summary of On-Scene Coordinator Protocol for Contaminated Underwater Operation EPA 600/D-84-040 PB84-149707

23. Interim Report on the Feasibility of Using UV Photolysis and APEG Resignit for Tratment of Dioxin Contaminated Soils EPA 600/2-85-083 PB85-232619

SW-867 GPO 055-000-00228-2 PB 87-/54-694

2. Hydrologio Simulation of Solid Waste Disposal Sites
SW-868 GPO 055-000-00225-8

3. Landfill and Surface Impoundment Performance Evaluation
8W-869 GPO 055-000-00233-8

4. Uning Waste Impoundment and Disposal Facilities
SW-870 PB86-192796

Name of Hazardous Waste Laschete
SW-871 GPO 005-000-00224-0 16 81-189-257

SW-871 GPO 005-000-00224-0 16 81-189

SW-872 GPO 005-000-002278-8

7. Closure of Hazardous Hazardous Alleren

The surface of Hazardous Alleren

The surface of Hazardous Alleren

SW-872 GPO 005-000-002278-8

7. Closure of Hazardous Alleren

The surface of Hazardous Alleren

SW-872 GPO 005-000-002278-8

The surface of Hazardous Alleren

The surface of Hazardous Alleren

SW-872 GPO 005-000-002278-8

The surface of Hazardous Alleren

The surface of Hazardous Aller

600 /2-25-106

# HEAVY METAL CONCENTRATIONS IN SURFICIAL MATERIALS IN THE UNITED STATES (McElroy et al., 1976)

|                 |                       |                                       |                    | The graph of a contract of                                                                                                                                                                                                       |                                                                                        |                                       | e english te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |            |
|-----------------|-----------------------|---------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|
|                 | . (                   | Arlthm                                | tic enalysi        |                                                                                                                                                                                                                                  |                                                                                        | Ceomet                                | ric means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :       | . •        |
|                 |                       | VAALEE                                |                    |                                                                                                                                                                                                                                  | Conterminous<br>U.S.                                                                   | . Heet                                | 08497th 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tast of | :97+h      |
|                 | Elemenc               |                                       | (22                |                                                                                                                                                                                                                                  | (ppm)                                                                                  |                                       | idisn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | merid   |            |
|                 | Arsente 1-            | 42-10                                 |                    | erate in a section of                                                                                                                                                                                                            | TPDM/ Francisco                                                                        | 11.6                                  | pm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ppm)   |            |
| W. Say          | Barium /o             |                                       | < 1,000            |                                                                                                                                                                                                                                  |                                                                                        | ( ·                                   | gstanson e ell •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |            |
| 8 - A - A       | Cadmium o             |                                       | 15-5,00            | 00                                                                                                                                                                                                                               | 430                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••      |            |
|                 | Cerium                |                                       | < 20               | 14 (M) (12 H).                                                                                                                                                                                                                   | i dia dia mandria dia dia<br>Mandria dia mandria dia dia dia dia dia dia dia dia dia d |                                       | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300     |            |
|                 | Chromium              | 86                                    | < 150-3            |                                                                                                                                                                                                                                  | 75                                                                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••      |            |
|                 | Cobalt                | 10                                    | 1-1,500            | rational and the last                                                                                                                                                                                                            | 37# Sep                                                                                |                                       | 74<br>38 (**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78,     | .,         |
| To give the in- | Copper &- H           | 50                                    | < 3-70             | मित्रिक्षणिक्ष वेष्ट्रमण्डे की अस्तर है।<br>'                                                                                                                                                                                    | -                                                                                      |                                       | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36      |            |
| State Na        | Iron \$000-10         | വ പ                                   | < 1-300            |                                                                                                                                                                                                                                  | 18                                                                                     |                                       | . <b>0</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7       |            |
|                 | Callium               | 22,000.                               | 100-100,           | 000                                                                                                                                                                                                                              | 18 000                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14      |            |
| 1.70            | Cermenium             | 19                                    | < 5-70             | realist to                                                                                                                                                                                                                       | 14 mg                                                                                  | * * * * * * * * * * * * * * * * * * * | · delication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15,000  |            |
|                 | Cold                  |                                       | <b>\ 10</b>        |                                                                                                                                                                                                                                  |                                                                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10      | aid.       |
|                 | Hafnium               |                                       | ~ 20               |                                                                                                                                                                                                                                  |                                                                                        | Name of the second                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |
| र हा लीहा ।     | Indium                | ig in Ne TilMi<br>••                  | < 100 1888<br>< 10 | Marie Marie (Marie Marie M<br>Marie Marie Ma | AND MALES LINES CONT.                                                                  | •                                     | . Here english e<br>■                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | • • •      |
|                 | Lanthanum             | 41                                    | < 30-200           | gravitation and                                                                                                                                                                                                                  | 95 <b>6</b> 1996 - 1874                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •       | -          |
| 200             | Lead - 200/10         | · · · · · · · · · · · · · · · · · · · | < 10-700°          | Balancia di A                                                                                                                                                                                                                    | 34,4                                                                                   | 33                                    | A STATE OF THE STA |         | ët.        |
|                 | Woo-Kanganese 20      | - 300/100360 ···                      | < 1-7,000          |                                                                                                                                                                                                                                  | 16 \                                                                                   | 18                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14      | riė.       |
|                 | Molybdenum :          | · · · · · · · · · · · · · · · · · · · | . < 3-7            | Andrews Co.                                                                                                                                                                                                                      | 340                                                                                    | 389                                   | Market Carlot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 285     | 1.5<br>191 |
|                 | Keodymium             | 45                                    | < 70-300           | 1<br>2首なスカセルンタ                                                                                                                                                                                                                   |                                                                                        | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | \$         |
| a Marketina     | Mickel 5-500          | / xxx 20                              | < 5-700 m          |                                                                                                                                                                                                                                  | 39<br>14                                                                               | 36                                    | KU to version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44      | 15.        |
|                 | X1ob1um               | ,13                                   | < 10-100           |                                                                                                                                                                                                                                  | 12                                                                                     | 16                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 4          |
|                 | Palladium<br>Platinum |                                       | < 1.               |                                                                                                                                                                                                                                  |                                                                                        | 11                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13      | નું        |
|                 | Rhenium               |                                       | < 30               |                                                                                                                                                                                                                                  |                                                                                        |                                       | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • •     | **         |
|                 | Scand (um             | ••                                    | < 10               |                                                                                                                                                                                                                                  | ••                                                                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |
| • •             | Strontium             | 10                                    | < 5-50             |                                                                                                                                                                                                                                  |                                                                                        | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |
|                 | Tantalum              | 240                                   | < 5-3,000          |                                                                                                                                                                                                                                  | -120                                                                                   | 9                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 7     |            |
|                 | Tellurium             |                                       | < 200              |                                                                                                                                                                                                                                  |                                                                                        | 210                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51      |            |
|                 | Thellium              |                                       | < 2,000            |                                                                                                                                                                                                                                  | ••                                                                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,       |            |
|                 | Thorium               | ••                                    | < 50               |                                                                                                                                                                                                                                  |                                                                                        | ••                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |
|                 | Titanium              |                                       | < 200              |                                                                                                                                                                                                                                  | ••                                                                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |
| •               | Uranium               | 3,000                                 | 300-15,000         | 2,                                                                                                                                                                                                                               | 300                                                                                    | 2,100                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.      |            |
|                 | Vanadium              | ••                                    | < 500              |                                                                                                                                                                                                                                  | N                                                                                      | 1,100                                 | • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,000   | Ş.         |
|                 | Ytterbium             | 76                                    | < 7-500            |                                                                                                                                                                                                                                  | 56                                                                                     | 66                                    | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |            |
| •               | Yttrium               | 20                                    | < 1-50             |                                                                                                                                                                                                                                  | <b>3</b>                                                                               | . 3                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46      | Os         |
| to les          | Zinc 10-300/50        | 29<br>54                              | < 10-200           |                                                                                                                                                                                                                                  | 24                                                                                     | 25                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J 11    | Ÿ.         |
|                 | Zirconium             | 240                                   | < 25-2,000         | . 3                                                                                                                                                                                                                              | 44                                                                                     | 51                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14      |            |
|                 | Silver 5-150          |                                       | < 10-2,000         | - Av.                                                                                                                                                                                                                            | 200                                                                                    | 170                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250     | er e       |
|                 | Total                 | 30,099                                | •                  | 21,9                                                                                                                                                                                                                             |                                                                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Ä.         |
|                 | •                     | •                                     |                    | 21,9                                                                                                                                                                                                                             | 91                                                                                     | 23,858                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,263    |            |
|                 | _                     |                                       |                    |                                                                                                                                                                                                                                  |                                                                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •       |            |

indicates all enalyses showed element to be below detectable limits. Selenium

DATA BASE RCRA TOTAL AND EP TOX HEAVY HETEALS CHICAGO AREA AND MORTHWEST INDIANA

|           |             |             |               |      |              |       |       |       |               | _             |              |
|-----------|-------------|-------------|---------------|------|--------------|-------|-------|-------|---------------|---------------|--------------|
| FILd<br># | CLTA        | SAMPLE<br># | ANALYSIS      | Ar   | Ва           | Cd    | Cr    | Pb    | Нд            | Se            | Ag           |
| *****     | *****       | *****       | *****         | **** | ****         | ****  | ***** | ***** | ****          | *****         | *****        |
| 7-3213    | Niles, IL   | bkgrd       | <b>JATOT</b>  | 2    | 79           |       | Ìó    | 22    | Ø.4           | 1             | Ø.5          |
|           |             | 1           | and the same  | 2.7  | 7ö           | Ø.5   | 14    | 23    | 0.4           | 1             | 1            |
|           |             | 1A          | 41            | 2.7  | 90           | Ø.5   | . 12  | 23    | 0.4           | 1             | 1.3          |
| * · · ·   |             | 2           | 11            | 4.6  | 99           | 0.5   | 13    | 21    | 0.4           | 1.            | 1.4          |
|           |             | 2A          | .11           | 4.8  | 71           | Ø.6   | 22    | T/08  | ø.8           | 1             | <b>0.</b> 8  |
| 7-3281    | Alsip, IL   | 1           | 1OTAL         | 3.3  | 8,55         | 0.6   | 54. د | 16    | Ø.Ø5          | Ø.39          | 2.97         |
|           |             | 2           | tr            | 4.8  | <i>5</i> 6   | 1.57  | 8.7   | 39    | 0.05          | 0.93          | 2.95         |
|           |             | 3           | "             | 5.9  | 41.9         | 1.54  | 9.49  | 32    | 0.05          | ø <b>.</b> 99 | 2.8          |
|           |             | 4           | Ħ             | 6.3  | 41.1         | 1.61  | 9.12  | 46    | Ø. <i>ð</i> 5 | Ø.4           | 2.98         |
| 7-3278    | Alsip. IL   | 1           | TOTAL         | 7.5  | 33.3         | 2.42  | 11.4  | 25    | 0.05          | Ø.39          | 2.9          |
|           | _           | 2           | 41            | 6.4  | 121          | 1.79  | 10.6  | 25    | Ø.05          | 8c.0          | 2.89         |
|           |             | 3           | 11            | 10.1 | 75.8         | 1.17  | 13.9  | 27    | 0.05          | 0.34          | 2.56         |
| 7-3235    | Rling Mdw   | 1           | TQ1,VT        | 13.2 | <b>33.</b> 3 | Ø.309 | 14.j  | 47    | 0.05          | 1             | 2.92         |
|           | _           | 2           | 11            | 11   | 63.8         | 0.367 | 13.6  | 48    | 0.4           | 1             | 1            |
| 7-3185    | Alsip. IL   | 1           | 101'AL        | 1.2  |              | 1.7   | 0.9   | 9.7   | 9.4           | 1             | 1.2          |
|           | -           | 2           | 11            | 2.2  |              | 2.9   | 5.2   | 18    | 0.4           | 1             | Ø <b>.</b> 5 |
|           |             | 3           | Ħ             | 2.3  |              | 2.1   | 3.4   | 8     | 0.4           | 1             | <b>D.</b> 7  |
|           |             | · A         | п             | 3.5  |              | Ø.5   | 13    | 15    | 0.4           | 1             | Ø.7          |
|           |             | F           | tr            | 6.4  |              | Ø.5   | 16    | 17    | 0.4           | 1             | Ø <b>.</b> 5 |
|           | • 1         | G           | H ,           | 6.3  |              | Ø.5   | 18    | . 21  | 0.4           | 1             | W.6          |
| 7 5120    | Gary        | 2           | TOTAL         | 2    | 510          | 1     | 7.7   | 31    | Ø.05          | 0.0           | 13           |
|           |             | 27          | 11            | 4    | 50           | 1     | 6.4   | 66    |               | 5             | 9.5          |
| 7-3068    | Des Plns    | 1           | <b>LATC</b> 1 | 3.9  | 87.7         | 1.04  | 12.8  | 34.4  | 0.05          | 1             | 2.96         |
|           |             | 2           | 11            | 5.1  | 64           | 1.69  | 11.6  | 85.7  | 0.061         | 1             | 2.94         |
|           | •           | 3           | ¢1            | 3.1  | 7ō.7         | 1.4   | 10.9  | 41.9  | 0.079         | Ţ             | 3.75         |
|           |             | 4           | - 11          | 1.9  | 70.9         | 6.83  | 11.5  |       | 0.067         | 1             | 3.43         |
|           | :           | 5           | 11            | 2    | 56           | 2.34  | 12.3  |       | Ø.087         | 1.            | 2.95         |
|           |             | 6           | 11            | 3.5  | 63.9         |       | 13.4  |       | 0.051         | 1             | 5.8          |
|           | -           | 7           | II.           | 3.1  | 73.5         | 2.27  | 13.4  | 114   | Ø.Ø63         | . 1           | 4.43         |
|           | <del></del> | - 8         |               | - 4  | 66.3         | 2.01  | 26.1  | 153.6 | 0.05          | 1             | 2.99         |
|           |             |             |               |      |              |       |       |       |               |               |              |

Mean = 4.55 67.9 1.483 11.81 49.33 0.208 1.014 2.830 STD = 2.843 12.51 1.230 5.109 44.98 0.196 0.776 2.638

DATA BASE RCRA TOTAL AND EP TOX HEAVY METEALS CHICAGO AREA AND NORTHWEST INDIANA

| FILE                 | CITY       | SAMPLE | AMAL       | 212 | · Ar        | ва            | Cd           | Cr    | Pb            | Нд      | Зe      | Ag          |  |
|----------------------|------------|--------|------------|-----|-------------|---------------|--------------|-------|---------------|---------|---------|-------------|--|
| #                    |            | #      |            |     | (mg/:       | 1 (mg/        | 1 (mg/1      | (ing/ | 1 (mg/        | 1 (mg/. | 1 (mg/1 | (ing/1)     |  |
| ******************** |            |        |            |     |             |               |              |       |               |         |         |             |  |
| 7-3213               | Niles, IL  | bkgrð  | ciP 1      | χO  | 0.05        | 2             | 0.1          | 0.5   | 1.5           | 0.5     | 0.002   | 0.5         |  |
| •                    |            | Ĭ      | 1          | •   | 0.05        | 2             | 0.1          | Ø.5   | 0.5           | Ø.5     | 0.002   | <b>2.5</b>  |  |
| _                    |            | 1A     | . •        | •   | Ø.∂5        | 2             | 0.1          | Ø.5   | 0.5           | ৶.5     | 0.002   | <b>0.</b> 5 |  |
|                      |            | 2      | 41         | •   | Ø.05        | 2             | 2.1          | Ø.5   | 0.5           | 0.5     | Ø.002   | 0.5         |  |
|                      |            | 2A     | •          | •   | 0.05        | 2             | Ø.1          | Ø.5   | 1.3           | 0.5     | 0.002   | <b>U.</b> 5 |  |
| 6-3184               | CHICAGO    | 1      | EP T       | XO. | 0.5         | 10            | Ø <b>.</b> 5 | 0.5   | 0.5           | 0.02    | 0.1     | 0.5         |  |
|                      |            | 2      | <b>5</b> 1 | •   | <b>0.</b> 5 | 10            | <b>⊌.</b> 5  | 0.5   | <b>0.</b> 5   | 0.02    | 3.1     | <b>0.</b> 5 |  |
|                      |            | 3      | •          | 1   | 0.5         | 19            | Ø.5          | 0.5   | ₽.5           | 0.02    | 2.1     | D.5         |  |
|                      |            | .4 .   | **         | ٠.  | 0.5         | . 10          | <b>0.5</b>   | Ø.5   | <b>2.</b> 5   | 0.02    | 0.1     | 0.5         |  |
| 6-3117               | Chnahn, IL | 1      | EP 1       | ΌX  | 0.5         | 10            | 0.1          | ø.5   | 0.5           | 0.02    | 0.1     | ø.s         |  |
|                      |            | 2      | 10         |     | 0.5         | ΤØ            | Ŋ.T          | W.5   | 0.5           | 0.32    | 0.1     | 0.5         |  |
| 7-3153               | Vern Hlls  | 1      | EP T       | XO  | <b>∌.</b> 5 | ΤĄ            | ø.1          | 0.5   | 0.5           | 0.02    | 0.1     | Ø.5         |  |
|                      | -          | 7      | "          |     | <b>0.</b> 5 | 19            | 9.1          | 0.5   | ð.5           | 0.02    | 9.1     | ð.5         |  |
|                      |            |        |            |     | 0.326       | <b>6.</b> 923 | Ø.223        | Ø.5   | <b>∂.</b> 531 | 0.204   | 0.052   | <b>∌.</b> 5 |  |
|                      |            |        |            |     | 0.218       |               |              |       |               | 0.233   |         | W           |  |

## APPENDIX C ANALYTICAL DATA



July 27, 1990 File 52-83202

Mr. Bob Strimbu ATEC Environmental Services 1501 East Main Street Griffith, IN 46319

Re:

Twenty-Four Soil for Total Metals SW 846 Method 6000 and 7000 Series

Dear Mr. Strimbu:

Enclosed are the results of the Chemical Analyses for the twenty-four soil samples which were submitted to the ATEC Environmental/Analytical Testing Division on July 16, 1990, on behalf of ACS. Metals were analyzed on a Perkin-Elmer Zeeman/5100 PC Atomic Absorption Spectrophotometer according to the 7000 series of the methods outlined in SW 846 and a ICP/EChell Plasma--Spec according to SW 846 Method 6010.

All associated quality control information will be maintained in the Testing Division files, a copy of which can be forwarded to you upon request. After a thirty-day period, a fee will be assessed for this additional information.

It has been a pleasure serving you and, as always, if there are any questions concerning these results or the ATEC Policies, please feel free to contact me.

Respectfully submitted, ATEC Associates, Inc.

John S. Sima

Environmental/Analytical

Date:

July 23, 1990

Client:

American Chemical Service

Griffith, Indiana

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

July 16, 1990

Date Received:

July 16, 1990

Date Analyzed: Analyst:

July 21, 1990

ATEC Lab Number:

EAB

900341

ATEC Project Number:

52-83202

| PARAMETERS (units in mg/kg |               | SAMPLE        | E I.D. NUMB   | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |            |
|----------------------------|---------------|---------------|---------------|-------------------|----------------------|------------|
| unless noted)              | <u>BG-7-1</u> | <u>BG-7-2</u> | <u>BG-7-3</u> | <u>BG-7-4</u>     | <u>LIMIT</u>         | METHOD NO. |
| Arsenic                    | < 5.0         | <5.0          | <5.0          | <5.0              | 5.0                  | 7060       |
| Barium                     | 160           | 17            | 5.0           | 5.4               | <b>5.0</b> (         | 6010       |
| Cadmium                    | <1.0          | <1.0          | < 1.0         | <1.0              | 1.0                  | 6010       |
| Chromium                   | 10            | < 5.0         | < 5.0         | < 5.0             | 5.0                  | 6010       |
| Lead                       | 24            | < 5.0         | < 5.0         | 5.6               | 5.0                  | 6010       |
| Mercury                    | <1.0          | <1.0          | <1.0          | <1.0              | ` 1.0                | 7470       |
| Selenium                   | <1.0          | <1.0          | < 1.0         | <1.0              | 1.0                  | 7740       |
| Silver                     | < 5.0         | < 5.0         | < 5.0         | < 5.0             | 5.0                  | 6010       |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Date:

July 23, 1990 ·

Client:

American Chemical Service

Griffith, Indiana

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

July 16, 1990

Date Received:

July 16, 1990

Date Analyzed:

July 21, 1990

Analyst:

**EAB** 

ATEC Lab Number:

900341

ATEC Project Number:

52-83202

| PARAMETERS<br>(units in mg/kg |               | SAMPLE        | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |               |       |            |
|-------------------------------|---------------|---------------|-------------------|----------------------|---------------|-------|------------|
| unless noted)                 | <u>BG-7-5</u> | <u>BG-7-6</u> | <u>B-25-1</u>     | <u>B-25-2</u>        | <u>B-25-3</u> | LIMIT | METHOD NO. |
| Arsenic                       | <5.0          | <5.0          | <5.0              | <5.0                 | < 5.0         | 5.0   | 7060       |
| Barium                        | 5.5           | < 5.0         | 110               | 16                   | 17            | 5.0   | 6010       |
| Cadmium                       | < 1.0         | <1.0          | <1.0              | <1.0                 | <1.0          | 1.0   | 6010       |
| Chromium                      | < 5.0         | <5.0          | < 5.0             | < 5.0                | < 5.0         | 5.0   | 6010       |
| Lead                          | 10            | 12            | 18                | < 5.0                | < 5.0         | 5.0   | 6010       |
| Mercury                       | <1.0          | <1.0          | <1.0              | <1.0                 | `<1.0         | 1.0   | 7470       |
| Selenium                      | <1.0          | <1.0          | <1.0              | < 1.0                | < 1.0         | 1.0   | 7740       |
| Silver                        | < 5.0         | < 5.0         | < 5.0             | < 5.0                | < 5.0         | 5.0   | 6010       |

<sup>\*</sup> Method Detection Limit

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Date:

July 23, 1990

Client:

American Chemical Service

Griffith, Indiana

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

July 16, 1990

Date Received: Date Analyzed: July 16, 1990

Date Analyzed:

July 21, 1990

Analyst:

EAB

ATEC Project Number:

900341

ATEC Project Number:

52-83202

| PARAMETERS (units in mg/kg |               | SAMPL         | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |               |              |            |
|----------------------------|---------------|---------------|-------------------|----------------------|---------------|--------------|------------|
| unless noted)              | <u>B-25-4</u> | <u>B-25-5</u> | <u>B-25-6</u>     | <u>B-26-1</u>        | <u>B-26-2</u> | <u>LIMIT</u> | METHOD NO. |
| Arsenic                    | <5.0          | < 5.0         | < 5.0             | < 5.0                | < 0.05        | 5.0          | 7060 •     |
| Barium                     | 9.3           | < 5.0         | < 5.0             | 110                  | 6.2           | 5.0          | 6010       |
| Cadmium                    | <1.0          | < 1.0         | <1.0              | <1.0                 | < 1.0         | 1.0          | 6010       |
| Chromium                   | < 5.0         | < 5.0         | < 5.0             | 6.0                  | < 5.0         | 5.0          | 6010       |
| Lead                       | < 5.0         | < 5.0         | < 5.0             | 18                   | < 5.0         | 5.0          | 6010       |
| Mercury                    | <1.0          | < 1.0         | <1.0              | <1.0                 | <1.0          | 1.0          | 7470       |
| Selenium                   | <1.0          | <1.0          | <1.0              | < 1.0                | <1.0          | 1.0          | 7740       |
| Silver                     | <5.0          | < 5.0         | < 5.0             | < 5.0                | < 5.0         | 5.0          | 6010       |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Date:

July 23, 1990

Client:

American Chemical Service

Griffith, Indiana

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

July 16, 1990

Date Received:

July 16, 1990

Date Analyzed:

July 21, 1990

Analyst: ATEC Lab Number: EAB

900341

ATEC Project Number:

52-83202

| PARAMETERS (units in mg/kg |               | SAMPL         | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |               |              |            |
|----------------------------|---------------|---------------|-------------------|----------------------|---------------|--------------|------------|
| unless noted)              | <u>B-26-3</u> | <u>B-26-4</u> | <u>B-26-5</u>     | <u>B-26-6</u>        | <u>B-27-1</u> | <u>LIMIT</u> | METHOD NO. |
| Arsenic                    | <5.0          | < 5.0         | < 5.0             | < 5.0                | < 0.05        | 5.0          | 7060       |
| Barium                     | 11            | 5.3           | < 5.0             | < 5.0                | 26            | 5.0          | 6010       |
| Cadmium                    | <1.0          | <1.0          | < 1.0             | <1.0                 | 5.2           | 1.0          | 6010       |
| Chromium                   | < 5.0         | < 5.0         | < 5.0             | < 5.0                | < 5.0         | 5.0          | 6010       |
| Lead                       | < 5.0         | < 5.0         | < 5.0             | < 5.0                | < 5.0         | 5.0          | 6010       |
| Mercury                    | <1.0          | < 1.0         | < 1.0             | < 1.0                | `<1.0         | 1.0          | 7470       |
| Selenium                   | < 1.0         | <1.0          | <1.0              | <1.0                 | <1.0          | 1.0          | 7740       |
| Silver                     | <5.0          | < 5.0         | < 5.0             | < 5.0                | < 5.0         | 5.0          | 6010       |

<sup>\*</sup> Method Detection Limit

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Date:

July 23, 1990

Client:

American Chemical Service

Griffith, Indiana

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

July 16, 1990

Date Received:

July 16, 1990

Date Analyzed: Analyst:

July 21, 1990

ATEC Lab Number:

EAB 900341

ATEC Project Number:

52-83202

| PARAMETERS<br>(units in mg/kg |               | SAMPLE        | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |               |       |            |
|-------------------------------|---------------|---------------|-------------------|----------------------|---------------|-------|------------|
| unless noted)                 | <u>B-27-2</u> | <u>B-27-3</u> | <u>B-27-4</u>     | <u>B-27-5</u>        | <u>B-27-6</u> | LIMIT | METHOD NO. |
| Arsenic                       | < 5.0         | < 5.0         | <5.0              | < 5.0                | < 0.05        | 5.0   | 7060       |
| Barium                        | 14            | 9.5           | 35                | 9.1                  | 9.3           | 5.0   | 6010       |
| Cadmium                       | < 1.0         | <1.0          | < 1.0             | < 1.0                | < 1.0         | 1.0   | 6010       |
| Chromium                      | < 5.0         | < 5.0         | < 5.0             | < 5.0                | < 5.0         | 5.0   | 6010       |
| Lead                          | < 5.0         | 10            | 39                | < 5.0                | < 5.0         | 5.0   | 6010       |
| Mercury                       | < 1.0         | < 1.0         | < 1.0             | < 1.0                | `<1.0         | 1.0   | 7470       |
| Selenium                      | < 1.0         | <1.0          | < 1.0             | < 1.0                | <1.0          | 1.0   | 7740       |
| Silver                        | < 5.0         | < 5.0         | < 5.0             | < 5.0                | < 5.0         | 5.0   | 6010       |

<sup>\*</sup> Method Detection Limit

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical



Julu 19, 1990 File 52-83202

Mr. Robert Strimbu ATEC Environmental Services 1501 East Main Street Griffith, IN 46319

Re: Seventy-Eight Soil for Total Metals

Nine Soil for EP-TOX Metals SW 846 Methods 6000 and 7000 Series

Dear Mr. Strimbu:

Enclosed are the results of the Chemical Analyses for the eighty-seven soil samples which were submitted to the ATEC Environmental/Analytical Testing Division on June 18-20, 1990, on behalf of Amerian Chemical Services. Metals were analyzed on a Perkin-Elmer Zeeman/5100 PC Atomic Absorption Spectrophotometer according to the 7000 series of the methods outlined in SW 846 and a ICP/EChell Plasma--Spec according to SW 846 Method 6010.

All associated quality control information will be maintained in the Testing Division files, a copy of which can be forwarded to you upon request. After a thirty-day period, a fee will be assessed for this additional information.

It has been a pleasure serving you and, as always, if there are any questions concerning these results or the ATEC Policies, please feel free to contact me.

Respectfully submitted, ATEC Associates, Inc.

John S. Sima

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Background #1

Sample Matrix:

Soil

Sample Taken By: Date Sampled: Robert Strimbu June 18, 1990

Date Received:

June 18, 1990

Date Analyzed:

June 18, 1990 July 11, 1990

Analyst;

EAB

ATEC Lab Number: ATEC Project Number:

900281 52-83202

| PARAMETER                        |           | <u>SAMPI</u> | QUANTI-    | SW 846     |            |                        |                       |  |
|----------------------------------|-----------|--------------|------------|------------|------------|------------------------|-----------------------|--|
| (units in mg/kg<br>unless noted) | <u>S1</u> | <u>S2</u>    | <u>\$3</u> | <u>\$4</u> | <u>\$5</u> | TATION<br><u>LIMIT</u> | ANALYTICAL METHOD NO. |  |
| Total Metals                     | ·         |              |            | •          |            |                        |                       |  |
| Arsenic                          | <5.0      | <5.0         | < 5.0      | < 5.0      | <5.0       | 5.0                    | 7060                  |  |
| Barium                           | 72        | 17           | 8.0        | < 5.0      | < 5.0      | 5.0                    | 6010                  |  |
| Cadmium                          | <1.0      | <1.0         | <1.0       | < 1.0      | < 1.0      | 1.0                    | 6010                  |  |
| Chromium                         | 6.7       | < 5.0        | < 5.0      | < 5.0      | < 5.0      | 5.0                    | 6010                  |  |
| Lead                             | 34        | < 5.0        | < 5.0      | < 5.0      | < 5.0      | 5.0                    | 6010                  |  |
| Mercury                          | <1.0      | < 1.0        | < 1.0      | < 1.0      | < 1.0      | 1.0                    | 7470                  |  |
| Selenium                         | < 1.0     | <1.0         | < 1.0      | < 1.0      | < 1.0      | 1.0                    | 7740                  |  |
| Silver                           | < 5.0     | < 5.0        | < 5.0      | < 5.0      | < 5.0      | 5.0                    | 6010                  |  |
| Nickel                           | < 5.0     | < 5.0        | < 5.0      | < 5.0      | < 5.0      | 5.0                    | 6010                  |  |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Background #1

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 19, 1990

Date Received: Date Analyzed: June 19, 1990 July 11, 1990

Analyst:

**EAB** 

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg unless noted) | SAMPLE I.D. NUMBER <u>S6</u> | QUANTI-<br>TATION<br><u>LIMIT</u> | SW 846<br>ANALYTICAL<br><u>METHOD NO.</u> |
|-----------------------------------------|------------------------------|-----------------------------------|-------------------------------------------|
| Total Metals                            | •                            |                                   |                                           |
| Arsenic                                 | <5.0                         | 5.0                               | 7060                                      |
| Barium                                  | 12                           | 5.0                               | 6010                                      |
| Cadmium                                 | <1.0                         | 1.0                               | 6010                                      |
| Chromium                                | <5.0                         | 5.0                               | 6010                                      |
| Lead                                    | 8.8                          | 5.0                               | 6010                                      |
| Mercury                                 | <1.0                         | 1.0                               | 7470                                      |
| Selenium                                | <1.0                         | 1.0                               | 7740                                      |
| Silver                                  | < 5.0                        | 5.0                               | 6010                                      |
| Nickel                                  | <5.0                         | 5.0                               | 6010                                      |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Background #4

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 18, 1990

Date Received:

June 18, 1990 July 11, 1990

Date Analyzed: Analyst:

Silver

Nickel

EAB

ATEC Lab Number: ATEC Project Number:

900281 52-83202

< 5.0

< 5.0

< 5.0

< 5.0

| PARAMETER (units in mg/kg |           | SAMPL             | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |            |              |            |
|---------------------------|-----------|-------------------|-------------------|----------------------|------------|--------------|------------|
| unless noted)             | <u>S1</u> | <u> <b>S2</b></u> | <u>S3</u>         | <u>\$4</u>           | <u>\$5</u> | <u>LIMIT</u> | METHOD NO. |
| Total Metals              |           |                   |                   |                      |            |              | •          |
| Arsenic                   | <5.0      | < 5.0             | < 5.0             | < 5.0                | < 5.0      | 5.0          | 7060       |
| Barium                    | . 32      | 23                | 16                | < 5.0                | 9.3        | 5.0          | 6010       |
| Cadmium                   | <1.0      | < 1.0             | < 1.0             | < 1.0                | < 1.0      | 1.0          | 6010       |
| Chromium                  | 7.2       | < 5.0             | < 5.0             | < 5.0                | < 5.0      | 5.0          | 6010       |
| Lead                      | 42        | 7.3               | < 5.0             | < 5.0                | 7.3        | 5.0          | 6010       |
| Mercury                   | < 1.0     | <1.0              | < 1.0             | < 1.0                | < 1.0      | 1.0          | 7470       |
| Selenium                  | <1.0      | < 1.0             | < 1.0             | <1.0                 | < 1.0      | 1.0          | 7740       |

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

< 5.0

5.0

5.0

6010

6010

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Background #5

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 20, 1990

Date Received:

June 20, 1990

Date Analyzed:

July 11, 1990

Analyst:

EAB

ATEC Lab Number:

900287

ATEC Project Number:

52-83202

| PARAMETER                        |           | <u>SAMPI</u> | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |           |       |            |
|----------------------------------|-----------|--------------|-------------------|----------------------|-----------|-------|------------|
| (units in mg/kg<br>unless noted) | <u>S1</u> | <u>S2</u>    | <u>S3</u>         | <u>\$4</u>           | <u>S5</u> | LIMIT | METHOD NO. |
| Total Metals                     |           |              | •                 |                      | •         |       |            |
| Arsenic                          | <5.0 ·    | < 5.0        | < 5.0             | < 5.0                | < 5.0     | 5.0   | 7060       |
| Barium                           | 45        | 24           | 31                | < 5.0                | 9.3       | 5.0   | 6010       |
| Cadmium                          | < 1.0     | <1.0         | < 1.0             | <1.0                 | <1.0      | 1.0   | 6010       |
| Chromium                         | < 5.0     | < 5.0        | < 5.0             | < 5.0                | < 5.0     | 5.0   | 6010       |
| Lead                             | 10        | < 5.0        | < 5.0             | < 5.0                | 7.3       | 5.0   | 6010       |
| Mercury                          | < 1.0     | < 1.0        | < 1.0             | < 1.0                | < 1.0     | 1.0   | 7470       |
| Selenium                         | < 1.0     | < 1.0        | <1.0              | <1.0                 | < 1.0     | 1.0   | 7740       |
| Silver                           | < 5.0     | < 5.0        | < 5.0             | < 5.0                | < 5.0     | 5.0   | 6010       |
| Nickel                           | < 5.0     | < 5.0        | < 5.0             | < 5.0                | < 5.0     | 5.0   | 6010       |
|                                  |           |              |                   |                      |           |       |            |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Background #5

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 20, 1990

Date Received:

June 20, 1990

July 11, 1990

Date Analyzed: Analyst:

**EAB** 

ATEC Lab Number:

900287

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg unless noted) | SAMPLE I.D. NUMBER <u>S6</u> | QUANTI-<br>TATION<br><u>LIMIT</u> | SW 846<br>ANALYTICAL<br><u>METHOD NO.</u> |
|-----------------------------------------|------------------------------|-----------------------------------|-------------------------------------------|
| Total Metals                            | •                            | ,                                 |                                           |
| Arsenic                                 | <5.0                         | 5.0                               | 7060                                      |
| Barium                                  | 12                           | 5.0                               | 6010                                      |
| Cadmium                                 | <1.0                         | 1.0                               | 6010                                      |
| Chromium                                | <5.0                         | 5.0                               | 6010                                      |
| Lead                                    | <5.0                         | 5.0                               | 6010                                      |
| Mercury                                 | <1.0                         | 1.0                               | 7470                                      |
| Selenium                                | <1.0                         | 1.0                               | 7740                                      |
| Silver                                  | <5.0                         | 5.0                               | 6010                                      |
| Nickel                                  | <5.0                         | 5.0                               | 6010                                      |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services Griffith, IN 46319

Sample Identification:

Background #6

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 20, 1990

Date Received:

June 20, 1990

Date Analyzed:

July 11, 1990

Analyst:

**EAB** 

ATEC Lab Number:

900287

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg |           | SAMPL      | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |           |              |            |
|---------------------------|-----------|------------|-------------------|----------------------|-----------|--------------|------------|
| unless noted)             | <u>S1</u> | <u>\$2</u> | <u>S3</u>         | <u>\$4</u>           | <u>S5</u> | <u>LIMIT</u> | METHOD NO. |
| Total Metals              | •         |            |                   |                      |           | •            | ·          |
| Arsenic                   | <5.0      | <5.0       | <5.0              | <5.0                 | <5.0      | 5.0          | 7060       |
| Barium                    | 120       | 56         | 17                | 6.2                  | 5.4       | 5.0          | 6010       |
| Cadmium                   | < 1.0     | 2.1        | <1.0              | 1.0                  | 1.0       | 1.0          | 6010       |
| Chromium                  | 6.4       | 15         | < 5.0             | < 5.0                | < 5.0     | 5.0          | 6010       |
| Lead                      | 8.0       | 120        | 5.7               | < 5.0                | 7.3       | 5.0          | 6010       |
| Mercury                   | < 1.0     | < 1.0      | < 1.0             | < 1.0                | < 1.0     | 1.0          | 7470       |
| Selenium                  | < 1.0     | < 1.0      | <1.0              | < 1.0                | < 1.0     | 1.0          | 7740       |
| Silver                    | < 5.0     | < 5.0      | < 5.0             | < 5.0                | < 5.0     | 5.0          | 6010       |
| Nickel                    | 5.6       | 22         | 7.2               | 7.5                  | 7.4       | 5.0          | 6010       |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Background #6

Sample Matrix:

Soil

Sample Taken By: Date Sampled:

Robert Strimbu

Date Received:

June 20, 1990

Date Analyzed:

June 20, 1990

July 11, 1990

Analyst: ATEC Lab Number: EAB

900287

ATEC Project Number:

52-83202

| PARAMETER<br>(units in mg/kg<br>unless noted) | <u>SAMPLE I.D. NUMBER</u> <u>S6</u> | QUANTI-<br>TATION<br><u>LIMIT</u> | SW 846<br>ANALYTICAL<br><u>METHOD NO.</u> |
|-----------------------------------------------|-------------------------------------|-----------------------------------|-------------------------------------------|
| Total Metals                                  |                                     |                                   |                                           |
| Arsenic                                       | <5.0                                | 5.0                               | 7060                                      |
| Barium                                        | 6.5                                 | 5.0                               | 6010                                      |
| Cadmium                                       | <1.0                                | 1.0                               | 6010                                      |
| Chromium                                      | <5.0                                | 5.0                               | 6010                                      |
| Lead                                          | <5.0                                | 5.0                               | 6010                                      |
| Mercury                                       | <1.0                                | 1.0                               | 7470                                      |
| Selenium                                      | <1.0                                | 1.0                               | 7740                                      |
| Silver                                        | <5.0                                | 5.0                               | 6010                                      |
| Nickel                                        | <5.0                                | 5.0                               | 6010                                      |
|                                               |                                     |                                   |                                           |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #1

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 18, 1990

Date Received:

June 18, 1990

Date Analyzed:

July 11, 1990

Analyst:

EAB

ATEC Lab Number:

900281

ATEC Project Number:

52-83202

| PARAMETER                        | SAMPLE I.I | SAMPLE I.D. NUMBER |                        |                                 |  |  |
|----------------------------------|------------|--------------------|------------------------|---------------------------------|--|--|
| (units in mg/kg<br>unless noted) | <u>\$1</u> | <u>\$2</u>         | TATION<br><u>LIMIT</u> | ANALYTICAL<br><u>METHOD NO.</u> |  |  |
| Total Metals                     |            | •                  |                        |                                 |  |  |
| Arsenic                          | <5.0       | <5.0               | 5.0                    | 7060                            |  |  |
| Barium                           | 17         | 13                 | 5.0                    | 6010                            |  |  |
| Cadmium                          | 1.0        | <1.0               | 1.0                    | 6010                            |  |  |
| Chromium                         | 5.1        | < 5.0              | 5.0                    | 6010                            |  |  |
| Lead                             | 11         | < 5.0              | 5.0                    | 6010                            |  |  |
| Mercury                          | <1.0       | < 1.0              | 1.0                    | 7470                            |  |  |
| Selenium                         | <1.0       | < 1.0              | 1.0                    | 7740                            |  |  |
| Silver                           | < 5.0      | < 5.0              | 5.0                    | 6010                            |  |  |
| Nickel                           | 5.2        | < 5.0              | 5.0                    | 6010                            |  |  |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #2

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

June 18, 1990

Date Received:

June 18, 1990 July 11, 1990

Date Analyzed: Analyst:

ATEC Lab Number:

EAB

900281

ATEC Project Number:

52-83202

| PARAMETER                        |           | SAMPLE I  | .D. NUMBER |            | QUANTI-                | SW 846                |
|----------------------------------|-----------|-----------|------------|------------|------------------------|-----------------------|
| (units in mg/kg<br>unless noted) | <u>S1</u> | <u>S2</u> | <u>S3</u>  | <u>\$4</u> | TATION<br><u>LIMIT</u> | ANALYTICAL METHOD NO. |
| Total Metals                     |           |           |            |            |                        | · .                   |
| Arsenic                          | <5.0      | < 5.0     | NT         | NT         | 5.0                    | 7060                  |
| Barium                           | 120       | 54        | 20         | 15         | 5.0                    | 6010                  |
| Cadmium                          | 2.5       | 1.2       | <1.0       | <1.0       | 1.0                    | 6010                  |
| Chromium                         | 21        | 9.9       | < 5.0      | < 5.0      | 5.0                    | 6010                  |
| Lead                             | 63        | 28        | . 7.1      | 5.9        | 5.0                    | 6010                  |
| Mercury                          | <1.0      | < 1.0     | NT         | NT         | 1.0                    | 7470                  |
| Selenium                         | < 1.0     | < 1.0     | NT         | NT         | 1.0                    | 7740                  |
| Silver                           | < 5.0     | < 5.0     | < 5.0      | < 5.0      | 5.0                    | 6010                  |
| Nickel                           | 6.5       | < 5.0     | 8.8        | < 5.0      | 5.0                    | 6010                  |

<sup>\*</sup> Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #2

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

Date Received:

June 19, 1990

Date Analyzed:

June 19, 1990 July 17, 1990

Analyst:

**EAB** 

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg | SAMPLE I.D. NUMBER |            |   | QUANTI-<br>TATION | SW 846                |
|---------------------------|--------------------|------------|---|-------------------|-----------------------|
| unless noted)             | <u>S5</u>          | <u>\$6</u> |   | <u>LIMIT</u>      | ANALYTICAL METHOD NO. |
| Total Metals              |                    |            | 4 | •                 |                       |
| Arsenic                   | < 5.0              | < 5.0      |   | 5.0               | 7060                  |
| Barium                    | 42                 | <5.0       |   | 5.0               | 6010                  |
| Cadmium                   | 2.0                | <1.0       |   | 1.0               | 6010                  |
| Chromium                  | < 5.0              | < 5.0      |   | 5.0               | 6010                  |
| Lead                      | 28                 | 5.2        |   | 5.0               | 6010                  |
| Mercury                   | <1.0               | <1.0       |   | 1.0               | 7470                  |
| Selenium                  | < 1.0              | <1.0       |   | 1.0               | 7740                  |
| Silver                    | < 5.0              | < 5.0      |   | 5.0               | 6010                  |
| Nickel                    | < 5.0              | < 5.0      |   | 5.0               | 6010                  |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Sample Matrix:

Boring #3 Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 18, 1990

Date Received:

June 18, 1990

Date Analyzed:

July 11, 1990

Analyst:

EAB

ATEC Lab Number:

900281

ATEC Project Number:

52-83202

|                           |           |            |             |            |                   | A Committee of the Comm |  |
|---------------------------|-----------|------------|-------------|------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PARAMETER (units in mg/kg |           | SAMPL      | E I.D. NUMI | BER        | QUANTI-<br>TATION | SW 846<br>ANALYTICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| unless noted)             | <u>S1</u> | <u>\$2</u> | <u>S3</u>   | <u>\$4</u> | LIMIT             | METHOD NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Total Metals              |           |            | •           |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Arsenic                   | <5.0      | 12         | NT          | NT         | 5.0               | 7060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Barium                    | 71        | 55         | 18          | 20         | 5.0               | 6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Cadmium                   | <1.0      | 1.3        | < 1.0       | 1.0        | 1.0               | 6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Chromium                  | 6.7       | 12         | < 5.0       | < 5.0      | 5.0               | 6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Lead                      | < 5.0     | 46         | 9.6         | < 5.0      | 5.0               | 6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Mercury                   | <1.0      | <1.0       | NT          | NT         | 1.0               | 7470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Selenium                  | <1.0      | < 1.0      | NT          | NT         | 1.0               | 7740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Silver                    | < 5.0     | < 5.0      | < 5.0       | < 5.0      | 5.0               | 6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Nickel                    | <5.0      | 10         | < 5.0       | < 5.0      | 5.0               | 6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                           |           |            |             |            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #4

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 18, 1990

Date Received:

June 18, 1990

Date Analyzed:

July 11, 1990

Analyst:

EAB

ATEC Lab Number:

900281

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg |           | SAMPI     | E I.D. NUM | BER_       |   | QUANTI-<br>TATION<br><u>LIMIT</u> | SW 846<br>ANALYTICAL |
|---------------------------|-----------|-----------|------------|------------|---|-----------------------------------|----------------------|
| unless noted)             | <u>S1</u> | <u>S2</u> | <u>S3</u>  | <u>\$4</u> | · |                                   | METHOD NO.           |
| Total Metals              | 4         |           |            |            |   |                                   |                      |
| Arsenic                   | <5.0      | < 5.0     | NT         | NT         |   | 5.0                               | 7060                 |
| Barium                    | 250       | 51        | 11         | 8.4        |   | 5.0                               | 6010                 |
| Cadmium                   | 7.6       | 1.0       | <1.0       | 1.0        |   | 1.0                               | 6010                 |
| Chromium                  | 68        | < 5.0     | < 5.0      | < 5.0      |   | 5.0                               | 6010                 |
| Lead                      | 300       | 15        | < 5.0      | < 5.0      |   | 5.0                               | 6010                 |
| Mercury                   | < 1.0     | < 1.0     | NT         | NT         |   | 1.0                               | 7470                 |
| Selenium                  | < 1.0     | < 1.0     | NT         | NT         |   | 1.0                               | 7740                 |
| Silver                    | < 5.0     | < 5.0     | < 5.0      | < 5.0      |   | 5.0                               | 6010                 |
| Nickel                    | < 5.0     | 6.9       | < 5.0      | < 5.0      |   | 5.0                               | 6010                 |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #5

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 18, 1990

Date Received:

June 18, 1990

July 11, 1990

Date Analyzed: Analyst:

**EAB** 

ATEC Lab Number:

900281

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg | SAMPLE I                      | .D. NUMBEI | 3            | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |
|---------------------------|-------------------------------|------------|--------------|-------------------|----------------------|
| unless noted)             | <u>S1</u> <u>S2</u> <u>S3</u> | <u>S3</u>  | <u>LIMIT</u> | METHOD NO.        |                      |
| Total Metals              |                               |            |              |                   |                      |
| Arsenic                   | <5.0                          | < 5.0      | NT           | <b>5.0</b> .      | 7060                 |
| Barium                    | 170                           | 10         | 12           | 5.0               | 6010                 |
| Cadmium                   | 1.5                           | <1.0       | <1.0         | 1.0               | 6010                 |
| Chromium                  | 32                            | < 5.0      | < 5.0        | 5.0               | 6010                 |
| Lead                      | 130                           | < 5.0      | < 5.0        | 5.0               | 6010                 |
| Mercury                   | <1.0                          | <1.0       | NT           | 1.0               | 7470                 |
| Selenium                  | <1.0                          | <1.0       | NT           | 1.0               | 7740                 |
| Silver                    | < 5.0                         | < 5.0      | <5.0         | 5.0               | 6010                 |
| Nickel                    | 5.3                           | < 5.0      | < 5.0        | 5.0               | 6010                 |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #6

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

Date Received:

June 18, 1990

June 18, 1990

Date Analyzed: Analyst:

July 11, 1990 EAB

ATEC Lab Number:

900281

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg | SAMPLE 1     | I.D. NUMBER |           | QUANTI-                | SW 846                   |
|---------------------------|--------------|-------------|-----------|------------------------|--------------------------|
| unless noted)             | <u>S1</u>    | <u>S2</u>   | <u>S3</u> | TATION<br><u>LIMIT</u> | ANALYTICAL<br>METHOD NO. |
| Total Metals              |              |             |           | ·                      |                          |
| Arsenic                   | <5.0         | <5.0        | NT        | 5.0                    | 7060                     |
| Barium                    | <b>170</b> , | 29          | 13        | 5.0                    | 6010                     |
| Cadmium                   | 1.4          | <1.0        | <1.0      | 1.0                    | 6010                     |
| Chromium                  | 14           | < 5.0       | <5.0      | 5.0                    | 6010                     |
| Lead                      | 46           | 5.7         | < 5.0     | 5.0                    | 6010                     |
| Mercury                   | <1.0         | < 1.0       | NT        | 1.0                    | 7470                     |
| Selenium                  | <1.0         | < 1.0       | NT        | 1.0                    | 7740                     |
| Silver                    | < 5.0        | < 5.0       | < 5.0     | 5.0                    | 6010                     |
| Nickel                    | 5.9          | < 5.0       | < 5.0     | 5.0                    | 6010                     |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #7

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 18, 1990

Date Received:

10 1000

Date Analyzed:

June 18, 1990

Analyst:

July 11, 1990 EAB

ATEC Lab Number:

900281

ATEC Project Number:

52-83202

| PARAMETER<br>(units in mg/kg | SAMPLE I.D. | NUMBER     | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |
|------------------------------|-------------|------------|-------------------|----------------------|
| unless noted)                | <u>\$1</u>  | <u>\$2</u> | <u>LIMIT</u>      | METHOD NO.           |
| Total Metals                 |             |            |                   | •                    |
| Arsenic                      | <5.0        | <5.0       | 5.0               | 7060                 |
| Barium                       | 28          | 16         | 5.0               | 6010                 |
| Cadmium                      | <1.0        | <1.0       | 1.0               | 6010                 |
| Chromium                     | 5.6         | < 5.0      | 5.0               | 6010                 |
| Lead                         | 14          | 11         | 5.0               | 6010                 |
| Mercury                      | <1.0        | <1.0       | 1.0               | 7470                 |
| Selenium                     | <1.0        | . <1.0     | 1.0               | 7740                 |
| Silver                       | < 5.0       | < 5.0      | 5.0               | 6010                 |
| Nickel                       | 9.1         | < 5.0      | 5.0               | 6010                 |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #8

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 11, 1990

Analyst:

**EAB** 

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg | SAMPLE I. | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |            |
|---------------------------|-----------|-------------------|----------------------|------------|
| unless noted)             | <u>S1</u> | •                 |                      | METHOD NO. |
| Total Metals              |           | •<br>•            | •                    |            |
| Arsenic                   | <5.0      | <5.0              | 5.0                  | 7060       |
| Barium                    | 7.4       | 17                | 5.0                  | 6010       |
| Cadmium                   | <1.0      | <1.0              | 1.0                  | 6010       |
| Chromium                  | <5.0      | < 5.0             | 5.0                  | 6010       |
| Lead                      | 10        | < 5.0             | 5.0                  | 6010       |
| Mercury                   | <1.0      | <1.0              | 1.0                  | 7470       |
| Selenium                  | <1.0      | <1.0              | 1.0                  | 7740       |
| Silver                    | < 5.0     | <5.0              | 5.0                  | 6010       |
| Nickel                    | 9.8       | < 5.0             | 5.0                  | 6010       |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #9

Sample Matrix: Sample Taken By: Soil Robert Strimbu

Date Sampled:

June 19, 1990

Date Received: Date Analyzed: June 19, 1990

Analyst:

July 11, 1990

ATEC Lab Number:

EAB 900285

ATEC Project Number:

900285 52-83202

| PARAMETER (units in mg/kg | SAMP      | PLE I.D. NUMBER | QUANTI<br>TATION | - SW 846<br>ANALYTICAL |
|---------------------------|-----------|-----------------|------------------|------------------------|
| unless noted)             | <u>S1</u> | <u>\$2</u>      | LIMIT            | METHOD NO.             |
| Total Metals              |           | •               |                  |                        |
| Arsenic                   | <5.0      | <5.0            | 5.0              | 7060                   |
| Barium                    | 10        | 14              | 5.0              | 6010                   |
| Cadmium                   | <1.0      | <1.0            | 1.0              | 6010                   |
| Chromium                  | < 5.0     | < 5.0           | 5.0              | 6010                   |
| Lead                      | 14        | < 5.0           | 5.0              | 6010                   |
| Mercury                   | <1.0      | <1.0            | 1.0              | 7470                   |
| Selenium                  | <1.0      | <1.0            | 1.0              | 7740                   |
| Silver                    | < 5.0     | < 5.0           | 5.0              | 6010                   |
| Nickel                    | 6.5       | < 5.0           | 5.0              | 6010                   |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #10

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 17, 1990

Analyst:

**EAB** 

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER                        |            | SAMPLE I.D. NUMBER |           |            |                        | SW 846                |
|----------------------------------|------------|--------------------|-----------|------------|------------------------|-----------------------|
| (units in mg/kg<br>unless noted) | <u>\$1</u> | <u>\$2</u>         | <u>S3</u> | <u>\$4</u> | TATION<br><u>LIMIT</u> | ANALYTICAL METHOD NO. |
| Total Metals                     |            | ·                  | •         |            |                        |                       |
| Arsenic                          | <5.0       | < 5.0              | NT        | NT         | 5.0                    | 7060                  |
| Barium                           | 13         | 12                 | 8.5       | 26         | 5.0                    | 6010                  |
| Cadmium                          | 2.0        | 3.3                | 2.4       | <1.0       | 1.0                    | 6010                  |
| Chromium                         | 6.4        | < 5.0              | < 5.0     | < 5.0      | 5.0                    | 6010                  |
| Lead                             | 19         | < 5.0              | < 5.0     | < 5.0      | 5.0                    | 6010                  |
| Mercury                          | <1.0       | < 1.0              | NT        | NT         | 1.0                    | 7470                  |
| Selenium                         | <1.0       | < 1.0              | NT        | NT         | 1.0                    | 7740                  |
| Silver                           | < 5.0      | < 5.0              | < 5.0     | < 5.0      | 5.0                    | 6010                  |
| Nickel                           | < 5.0      | < 5.0              | < 5.0     | < 5.0      | 5.0                    | 6010                  |

<sup>\*</sup> Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #10

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 17, 1990

Analyst:

EAB

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg unless noted) | SAMPLE I.D. NUMBER S5 | QUANTI-<br>TATION<br><u>LIMIT</u> | SW 846<br>ANALYTICAL<br><u>METHOD NO.</u> |
|-----------------------------------------|-----------------------|-----------------------------------|-------------------------------------------|
| Total Metals                            |                       |                                   | ·                                         |
| Arsenic                                 | <5.0                  | 5.0                               | 7060                                      |
| Barium                                  | 17                    | 5.0                               | 6010                                      |
| Cadmium                                 | <1.0                  | 1.0                               | 6010                                      |
| Chromium                                | <5.0                  | 5.0                               | 6010                                      |
| Lead                                    | 9.3                   | 5.0                               | 6010                                      |
| Mercury                                 | <1.0                  | 1.0                               | 7470                                      |
| Selenium                                | <1.0                  | 1.0                               | 7740                                      |
| Silver                                  | <5.0                  | 5.0                               | 6010                                      |
| Nickel                                  | < 5.0                 | 5.0                               | 6010                                      |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #11

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 17, 1990

Analyst:

**EAB** 

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER                        |           | SAMPLE I.D. NUMBER |           |            |                        | SW 846                   |
|----------------------------------|-----------|--------------------|-----------|------------|------------------------|--------------------------|
| (units in mg/kg<br>unless noted) | <u>S1</u> | <u>S2</u>          | <u>S3</u> | <u>\$4</u> | TATION<br><u>LIMIT</u> | ANALYTICAL<br>METHOD NO. |
| Total Metals                     |           |                    | ,         |            | :                      |                          |
| Arsenic                          | <5.0      | < 5.0              | NT        | <5.0       | 5.0                    | 7060                     |
| Barium                           | 13        | 18                 | 9.0       | 14         | 5.0                    | 6010                     |
| Cadmium                          | 2.2       | 3.0                | <1.0      | <1.0       | 1.0                    | 6010                     |
| Chromium                         | < 5.0     | 7.4                | < 5.0     | < 5.0      | 5.0                    | 6010                     |
| Lead                             | < 5.0     | 11                 | < 5.0     | < 5.0      | 5.0                    | 6010                     |
| Mercury                          | < 1.0     | <1.0               | NT        | < 1.0      | 1.0                    | 7470                     |
| Selenium                         | < 1.0     | < 1.0              | NT        | <1.0       | 1.0                    | 7740                     |
| Silver                           | < 5.0     | < 5.0              | < 5.0     | < 5.0      | 5.0                    | 6010                     |
| Nickel                           | < 5.0     | < 5.0              | < 5.0     | < 5.0      | 5.0                    | 6010                     |

<sup>\*</sup> Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #12

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 11 & 17, 1990

Analyst:

CAD.

ATEC Lab Number:

EAB

< 5.0

< 5.0

< 5.0

< 5.0

ATEC Project Number:

900285 52-83202

| PARAMETER<br>(units in mg/kg | ·         | SAMPLE I.D. NUMBER |              |            |                        | SW 846<br>ANALYTICAL |
|------------------------------|-----------|--------------------|--------------|------------|------------------------|----------------------|
| unless noted)                | <u>S1</u> | <u>\$2</u>         | <u>S3</u>    | <u>\$4</u> | TATION<br><u>LIMIT</u> | METHOD NO.           |
| Total Metals                 |           |                    |              |            |                        | •                    |
| Arsenic                      | <5.0      | < 5.0              | NT           | <5.0       | 5.0                    | 7060                 |
| Barium                       | 15        | , 6.4              | · <b>5.5</b> | 26         | 5.0                    | 6010                 |
| Cadmium                      | 1.8       | < 1.0              | 3.4          | <1.0       | 1.0                    | 6010                 |
| Chromium                     | 6.4       | < 5.0              | < 5.0        | 6.5        | 5.0                    | 6010                 |
| Lead                         | 10        | < 5.0              | < 5.0        | 27         | 5.0                    | 6010                 |
| Mercury                      | < 1.0     | < 1.0              | NT           | < 1.0      | 1.0                    | 7470                 |
| Selenium                     | < 1.0     | < 1.0              | NT           | < 1.0      | 1.0                    | 7740                 |

<sup>\*</sup> Not Tested

Silver

Nickel

Respectfully submitted, ATEC Associates, Inc.

< 5.0

< 5.0

< 5.0

< 5.0

5.0

•5.0

6010

6010

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #15

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 19, 1990

Date Received:

Date Analyzed:

June 19, 1990 July 11, 1990

Analyst:

**EAB** 

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER                        | SAMPLE I.D | . NUMBER   | QUANTI-<br>TATION | SW 846<br>ANALYTICAL<br><u>METHOD NO.</u> |
|----------------------------------|------------|------------|-------------------|-------------------------------------------|
| (units in mg/kg<br>unless noted) | <u>\$1</u> | <u>\$2</u> | <u>LIMIT</u>      |                                           |
| Total Metals                     |            |            | ₹                 |                                           |
| Arsenic                          | NT         | NT         | . 5.0             | 7060                                      |
| Barium                           | 11         | 11,        | 5.0               | 6010                                      |
| Cadmium                          | <1.0       | <1.0       | 1.0               | 6010                                      |
| Chromium                         | < 5.0      | <5.0       | 5.0               | 6010                                      |
| Lead                             | < 5.0      | < 5.0      | 5.0               | 6010                                      |
| Mercury                          | NT         | NT         | 1.0               | 7470                                      |
| Selenium                         | NT         | NT         | 1.0               | 7740                                      |
| Silver                           | < 5.0      | < 5.0      | 5.0               | 6010                                      |
| Nickel                           | < 5.0      | < 5.0      | 5.0               | 6010                                      |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #19

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 11, 1990

Analyst:

EAB

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

|   | PARAMETER                        |     | <u>SAMPLE I</u> | .D. NUMBER | QUANTI- SW 846         |                          |  |
|---|----------------------------------|-----|-----------------|------------|------------------------|--------------------------|--|
|   | (units in mg/kg<br>unless noted) |     | <u>S1</u>       | <u>\$2</u> | TATION<br><u>LIMIT</u> | ANALYTICAL<br>METHOD NO. |  |
|   | Total Metals                     | •   |                 | •          |                        |                          |  |
|   | Arsenic                          |     | NT              | NT         | 5.0                    | 7060                     |  |
| · | Barium                           |     | 74              | 17         | 5.0                    | 6010                     |  |
|   | Cadmium                          |     | <1.0            | <1.0       | 1.0                    | 6010                     |  |
|   | Chromium                         |     | < 5.0           | < 5.0      | 5.0                    | 6010                     |  |
|   | Lead                             | ÷ - | 13              | 6.4        | 5.0                    | 6010                     |  |
|   | Mercury                          |     | NT              | NT         | 1.0                    | 7470                     |  |
|   | Selenium                         |     | NT              | NT         | 1.0                    | 7740                     |  |
|   | Silver                           |     | < 5.0           | < 5.0      | 5.0                    | 6010                     |  |
|   | Nickel                           |     | < 5.0           | <5.0       | 5.0                    | 6010                     |  |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #20

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 17, 1990

Analyst:

EAB

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER                        |            | <u>SAMPLE</u> | QUANTI-   | SW 846     |                        |                          |  |
|----------------------------------|------------|---------------|-----------|------------|------------------------|--------------------------|--|
| (units in mg/kg<br>unless noted) | <u>\$1</u> | <u>\$2</u>    | <u>S3</u> | <u>\$4</u> | TATION<br><u>LIMIT</u> | ANALYTICAL<br>METHOD NO. |  |
| Total Metals                     |            | •             |           |            |                        |                          |  |
| Arsenic                          | <5.0       | <5.0          | <5.0      | <5.0       | 5.0                    | 7060                     |  |
| Barium                           | 130        | 66            | 12        | < 5.0      | 5.0                    | 6010                     |  |
| Cadmium                          | <1.0       | <1.0          | <1.0      | <1.0       | 1.0                    | 6010                     |  |
| Chromium                         | 6.5        | < 5.0         | < 5.0     | < 5.0      | 5.0                    | 6010                     |  |
| Lead                             | 26         | 12            | < 5.0     | < 5.0      | 5.0                    | 6010                     |  |
| Mercury                          | <1.0       | <1.0          | <1.0      | <1.0       | 1.0                    | 7470                     |  |
| Selenium                         | <1.0       | <1.0          | <1.0      | <1.0       | 1.0                    | 7740                     |  |
| Silver                           | <5.0       | < 5.0         | < 5.0     | < 5.0      | 5.0                    | 6010                     |  |
| Nickel                           | < 5.0      | <5.0          | <5.0      | < 5.0      | 5.0                    | 6010                     |  |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #21

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 11, 1990

Analyst:

EAB

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg | SAMPLE I.D. | NUMBER      | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |
|---------------------------|-------------|-------------|-------------------|----------------------|
| unless noted)             | <u>S1</u>   | <u>S2</u>   | <u>LIMIT</u>      | METHOD NO.           |
| Total Metals              |             |             | -                 | ٠                    |
| Arsenic                   | NT          | NT          | 5.0               | 7060                 |
| Barium                    | 43          | <b>17</b> . | 5.0               | 6010                 |
| Cadmium                   | <1.0        | <1.0        | 1.0               | 6010                 |
| Chromium                  | <5.0        | < 5.0       | 5.0               | 6010                 |
| Lead                      | 15          | 17          | 5.0               | 6010                 |
| Mercury                   | NT          | NT          | 1.0               | 7470                 |
| Selenium                  | NT          | NT          | 1.0               | 7740                 |
| Silver                    | < 5.0       | < 5.0       | 5.0               | 6010                 |
| Nickel                    | <5.0        | < 5.0       | 5.0               | 6010                 |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #22

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 11, 1990

Analyst:

EAB

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER<br>(units in mg/kg | SAMPLE I.D. | SAMPLE I.D. NUMBER |                        | SW 846<br>ANALYTICAL |
|------------------------------|-------------|--------------------|------------------------|----------------------|
| unless noted)                | <u>S1</u>   | <u>\$2</u>         | TATION<br><u>LIMIT</u> | METHOD NO.           |
| Total Metals                 | •           |                    |                        |                      |
| -Arsenic                     | NT          | NT                 | 5.0                    | 7060                 |
| Barium                       | 30          | 9.1.               | 5.0                    | 6010                 |
| Cadmium                      | <1.0        | <1.0               | 1.0                    | 6010                 |
| Chromium                     | < 5.0       | <5.0               | 5.0                    | 6010                 |
| Lead                         | < 5.0       | < 5.0              | 5.0                    | 6010                 |
| Mercury                      | NT          | NT                 | 1.0                    | 7470                 |
| Selenium                     | NT          | NT                 | 1.0                    | 7740                 |
| Silver                       | < 5.0       | < 5.0              | 5.0                    | 6010                 |
| Nickel                       | < 5.0       | < 5.0              | 5.0                    | 6010                 |

NT - Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN 46319

Sample Identification:

Boring #24

Sample Matrix:

Soil

Sample Taken By:

Robert Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 11, 1990

Analyst:

EAB

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg | SAMPLE I.D. NUMBER | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |
|---------------------------|--------------------|-------------------|----------------------|
| unless noted)             | <u>S1</u>          | LIMIT             | METHOD NO.           |
| Total Metals              |                    |                   |                      |
| Arsenic                   | NT                 | 5.0               | 7060                 |
| Barium                    | 23                 | 5.0               | 6010                 |
| Cadmium                   | <1.0               | 1.0               | 6010                 |
| Chromium                  | <5.0               | 5.0               | 6010                 |
| Lead                      | <5.0               | 5.0               | 6010                 |
| Mercury                   | NT                 | 1.0               | 7470                 |
| Selenium                  | NT                 | 1.0               | 7740                 |
| Silver                    | < 5.0              | 5.0               | 6010                 |
| Nickel                    | <5.0               | 5.0               | 6010                 |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #2

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

June 18, 1990

Date Received:

June 18, 1990

Date Analyzed:

July 17, 1990

Analyst:

Selenium

Silver

EAB

ATEC Lab Nu

900281

52-83202

| MIEC | Lau Number:     |
|------|-----------------|
| ATEC | Project Number: |

| PARAMETER (units in mg/L | ************************************** |                       |    | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |
|--------------------------|----------------------------------------|-----------------------|----|-------------------|----------------------|
| unless noted)            | <u>S1</u>                              | <u>\$1</u> <u>\$2</u> |    | <u>LIMIT</u>      | METHOD NO.           |
| EP-TOX Metals            |                                        |                       |    |                   | · · ·                |
|                          |                                        |                       | ζ. | •                 | •                    |
| Arsenic                  | <0.5                                   | < 0.5                 | ·  | 0.5               | 7060                 |
| Barium                   | <1.0                                   | <1.0                  |    | 1.0               | 6010                 |
| Cadmium                  | < 0.1                                  | < 0.1                 |    | 0.1               | 6010                 |
| Chromium                 | <0.5                                   | < 0.5                 |    | 0.5               | 6010                 |
| Lead                     | < 0.5                                  | < 0.5                 |    | 0.5               | 6010                 |
| Mercury                  | < 0.02                                 | < 0.02                |    | 0.02              | 7470                 |

Respectfully submitted, ATEC Associates, Inc.

< 0.2

< 0.5

< 0.2

< 0.5

0.2

0.5

7740

6010

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #6

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

June 18, 1990

Date Received:

June 18, 1990

Date Analyzed:

July 17, 1990

Analyst:

EAB

ATEC Lab Number:

900281

ATEC Project Number:

52-83202

| PARAMETER (units in mg/L unless noted) | SAMPLE I.D. NUMBER <u>S1</u> | QUANTI-<br>TATION<br><u>LIMIT</u> | SW 846<br>ANALYTICAL<br>METHOD NO. |
|----------------------------------------|------------------------------|-----------------------------------|------------------------------------|
| EP-TOX Metals                          | •                            |                                   |                                    |
| Arsenic                                | < 0.5                        | 0.5                               | 7060                               |
| Barium                                 | <1.0                         | 1.0                               | 6010                               |
| Cadmium                                | <0.1                         | 0.1                               | 6010                               |
| Chromium                               | <0.5                         | 0.5                               | 6010                               |
| Lead                                   | < 0.5                        | 0.5                               | 6010                               |
| Mercury                                | < 0.02                       | 0.02                              | 7470                               |
| Selenium                               | <0.2                         | 0.2                               | 7740                               |
| Silver                                 | < 0.5                        | 0.5                               | 6010                               |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #10

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled: •

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 17, 1990

Analyst:

**EAB** 

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER (units in mg/L | SAMPLE     | SAMPLE I.D. NUMBER |   | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |
|--------------------------|------------|--------------------|---|-------------------|----------------------|
| unless noted)            | <u>\$1</u> | <u>\$2</u>         | • | LIMIT             | METHOD NO.           |
| EP-TOX Metals            | •          |                    | • |                   | ·<br>·               |
| Arsenic                  | < 0.5      | < 0.5              |   | 0.5               | 7060                 |
| Barium                   | <1.0       | <1.0               |   | 1.0               | 6010                 |
| Cadmium                  | < 0.1      | < 0.1              |   | 0.1               | 6010                 |
| Chromium                 | < 0.5      | < 0.5              |   | 0.5               | 6010                 |
| _ Lead                   | < 0.5      | < 0.5              |   | 0.5               | 6010                 |
| Mercury                  | < 0.02     | < 0.02             |   | 0.02              | 7470                 |
| Selenium                 | < 0.2      | < 0.2              |   | 0.2               | 7740                 |
| Silver                   | < 0.5      | < 0.5              |   | 0.5               | 6010                 |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #11

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 17, 1990

Analyst:

EAB

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER (units in mg/L unless noted) | <u>SAMPLE I</u><br><u>S1</u> | .D. NUMBER<br>,<br><u>S2</u> | QUANTI-<br>TATION<br>LIMIT | SW 846<br>ANALYTICAL<br>METHOD NO. |
|----------------------------------------|------------------------------|------------------------------|----------------------------|------------------------------------|
| · ·                                    |                              | 22                           | ,                          |                                    |
| EP-TOX Metals                          | ,                            |                              |                            |                                    |
| *                                      |                              |                              |                            |                                    |
| Arsenic                                | <0.5                         | <0.5                         | 0.5                        | 7060                               |
| Barium                                 | <1.0                         | <1.0                         | 1.0                        | 6010                               |
| Cadmium                                | < 0.1                        | < 0.1                        | 0.1                        | 6010                               |
| Chromium                               | <0.5                         | < 0.5                        | 0.5                        | 6010                               |
| Lead                                   | < 0.5                        | < 0.5                        | 0.5                        | 6010                               |
| Mercury                                | < 0.02                       | < 0.02                       | 0.02                       | 7470                               |
| Selenium                               | < 0.2                        | < 0.2                        | 0.2                        | 7740                               |
| Silver                                 | <0.5                         | <0.5                         | 0.5                        | 6010                               |
| <u> </u>                               |                              |                              |                            |                                    |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #23

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990

Date Analyzed:

July 17, 1990

Analyst:

EAB

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER (units in mg/kg | SAMPLE    | I.D. NUMBER | •         | QUANTI-<br>TATION | SW 846                   |
|---------------------------|-----------|-------------|-----------|-------------------|--------------------------|
| unless noted)             | <u>S1</u> | <u>\$2</u>  | <u>S3</u> | <u>LIMIT</u>      | ANALYTICAL<br>METHOD NO. |
| Total Metals              |           |             |           |                   |                          |
| Arsenic                   | NT        | <5.0        | <5.0      | 5.0               | 7060                     |
| Barium                    | 110       | 24          | 13        | 5.0               | 6010                     |
| Cadmium                   | < 1.0     | < 1.0       | < 1.0     | 1.0               | 6010                     |
| Chromium                  | 23        | < 5.0       | < 5.0     | 5.0               | 6010                     |
| Lead                      | 94        | < 5.0       | < 5.0     | 5.0               | 6010                     |
| Mercury                   | NT        | < 1.0       | < 1.0     | 1.0               | 7470                     |
| Selenium                  | NT        | < 1.0       | < 1.0     | 1.0               | 7740                     |
| Silver                    | < 5.0     | < 5.0       | < 5.0     | 5.0               | 6010                     |
| Nickel                    | <5.0      | < 5.0       | < 5.0     | 5.0               | 6010                     |

\* Not Tested

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical
Testing Division

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Boring #12

Sample Matrix:

Soil

Sample Taken By:

Rob Strimbu

Date Sampled:

June 19, 1990

Date Received:

June 19, 1990 July 17, 1990

Date Analyzed: Analyst:

EAB

ATEC Lab Number:

900285

ATEC Project Number:

52-83202

| PARAMETER (units in mg/L unless noted) | SAMPLE I.D. NUMBER  S1 | QUANTI-<br>TATION<br><u>LIMIT</u> | SW 846<br>ANALYTICAL<br><u>METHOD NO.</u> |
|----------------------------------------|------------------------|-----------------------------------|-------------------------------------------|
| EP-TOX Metals                          |                        |                                   |                                           |
| Arsenic                                | <0.5                   | 0.5                               | 7060                                      |
| Barium                                 | <1.0                   | 1.0                               | 6010                                      |
| Cadmium                                | <0.1                   | 0.1                               | 6010                                      |
| Chromium                               | < 0.5                  | 0.5                               | 6010                                      |
| Lead                                   | < 0.5                  | 0.5                               | 6010                                      |
| Mercury                                | < 0.02                 | 0.02                              | 7470                                      |
| Selenium                               | < 0.2                  | 0.2                               | · 7740                                    |
| Silver                                 | < 0.5                  | 0.5                               | 6010                                      |
| Nickel                                 | < 5.0                  | 0.5                               | 6010                                      |

Respectfully submitted, ATEC Associates, Inc.

Environmental/Analytical

Client:

American Chemical Services

Griffith, IN

Sample Identification:

Sample Matrix:

Sample Matrix:
Sample Taken By:

Sample Taken By

Date Sampled: Date Received:

Date Analyzed:

Analyst:

ATEC Lab Number: ATEC Project Number:

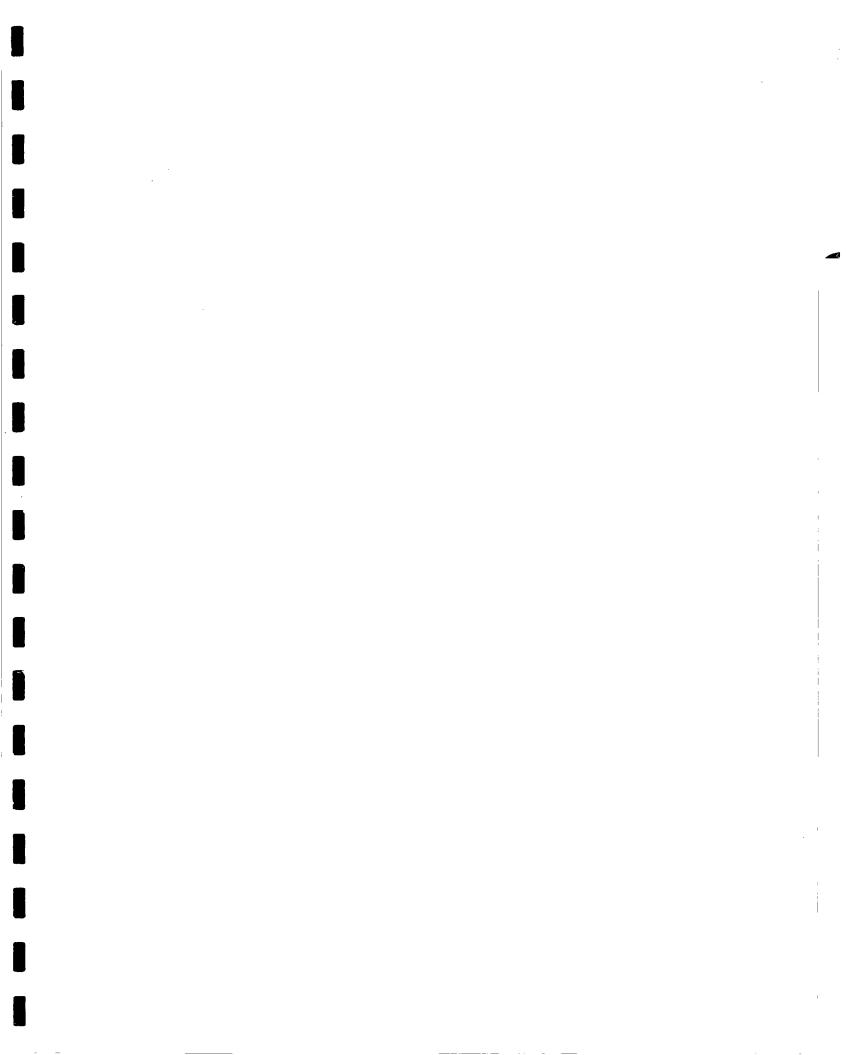
Boring #12

Concrete

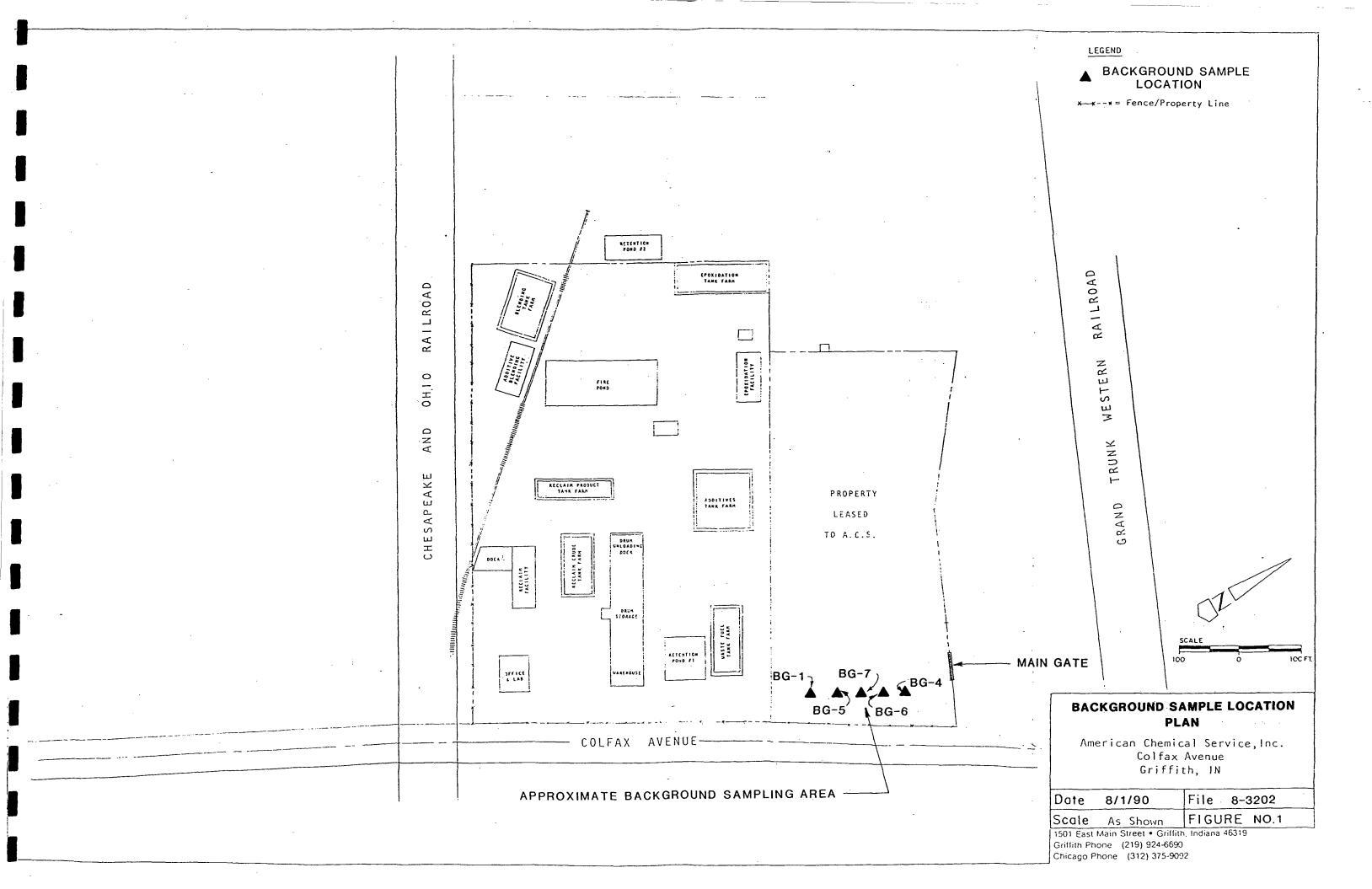
Rob Strimbu

June 18, 1990 June 18, 1990

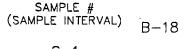
July 19, 1990

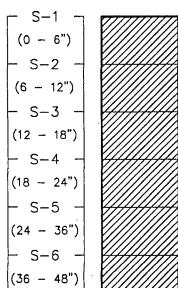

EAB

900281 52-83202


| PARAMETER (units in mg/L | SAMPLE I.D. NUMBER | QUANTI-<br>TATION | SW 846<br>ANALYTICAL |
|--------------------------|--------------------|-------------------|----------------------|
| unless noted)            | <u>S1</u>          | <u>LIMIT</u>      | <u>METHOD NO.</u>    |
| EP-TOX Metals            | ·                  |                   | **                   |
| Arsenic                  | <0.5               | 0.5               | 7060                 |
| Barium                   | <1.0               | 1.0               | 6010                 |
| Cadmium                  | <0.1               | 0.1               | 6010                 |
| Chromium                 | < 0.5              | 0.5               | 6010                 |
| Lead                     | < 0.5              | 0.5               | 6010                 |
| Mercury                  | < 0.02             | 0.02              | 7470                 |
| Selenium                 | < 0.2              | 0.2               | 7740                 |
| Silver                   | < 0.5              | 0.5               | 6010                 |

Respectfully submitted, ATEC Associates, Inc.


Environmental/Analytical




# FIGURE 1 BACKGROUND SAMPLE LOCATIONS



# FIGURES 2 TO 6 CONCENTRATIONS VERSUS SAMPLE LOCATIONS





$$B-1$$

Pb-10

Ba-35

Pb-39

Ba-9.1

Ba-9.3



0 .50 SCALE, FT CROSS SECTION

AMERICAN CHEMICAL SERVICES

GRIFFITH, INDIANA

DATE: 7/26/90 FILE: 8-3202 SCALE: 1" = 50' FIGURE NO.2

SAMPLE # (SAMPLE INTERVAL) B-19 B-2B-11 B-12 B-7 r S−1 Cd-1.8 Cr-5.6 Ba-74 Ba-120 (0 - 6")Cr-6.4 Ni-9.1 Ni-6.5 Pb-63 - S-2 Ba-54 Cd-3.0  $(6 - 12^{m})$ Cr-7.4 Cr-9.9 - S<del>-</del>3 Ba-20 Cd-3.4 (12 - 18")Ni-8.8 Pb-7.1 - S-4 Ba-26 Ba-15 Ba-14 (18. - 24")Cr-6.5 Pb-5.9 Pb-27 - S-5 Ba-42 Ba-9.5 (24 - 36") Pb-48 - S-6 Pb-5.2 (36 - 48\*)

> 0 50 SCALE, FT

CROSS SECTION

AMERICAN CHEMICAL SERVICES

GRIFFITH, INDIANA

DATE: 7/26/90 FILE: 8-3202 SCALE: 1" = 50' FIGURE NO.3

SAMPLE #
(SAMPLE INTERVAL) B-20 B-3

S-1
(0 - 6") Ba-130
Br-6.5
Pb-26

Ba-66
Pb-12

Ba-55
Cr-12

S-3

(12 - 18")

⊢ S−4

(18 - 24")

Ba-250 Cd-7.6 Cr-68 Pb-300

Ba-18

Pb-9.6

Ba-20

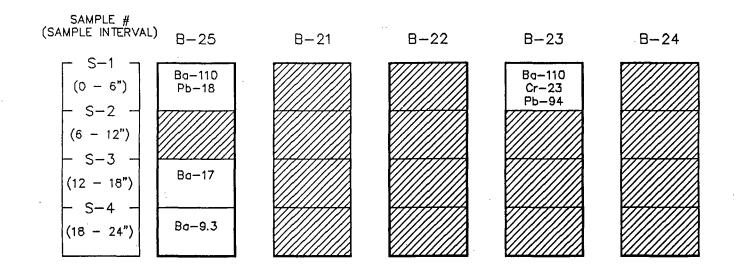
B-4

Ba-8.4

Ba-170 Cd-1.5 Cr-32 Ni-5.3 Pb-130

Ba-170 Cd-1.4 Cr-14 Ni-5.9 Pb-46

B-6


B-5

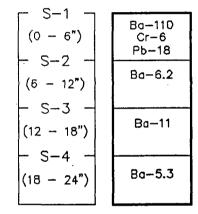
0 50 SCALE, FT CROSS SECTION

AMERICAN CHEMICAL SERVICES

GRIFFITH, INDIANA

| DATE: 7/26/90   | FILE: 8 | -3202 |
|-----------------|---------|-------|
| SCALE: 1" = 50' | FIGURE  | NO.4  |




0 50 SCALE, FT CROSS SECTION

AMERICAN CHEMICAL SERVICES

GRIFFITH, INDIANA

| DATE: 7/26/90   | FILE: 8-3202 |
|-----------------|--------------|
| SCALE: 1" = 50' | FIGURE NO.5  |

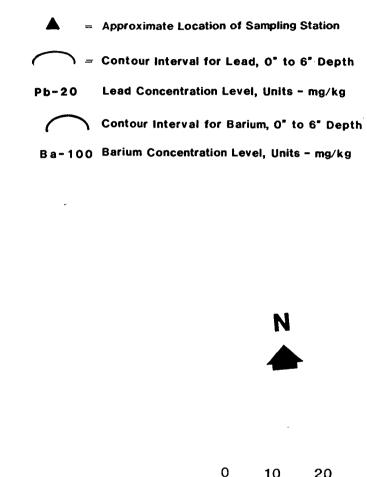






CROSS SECTION

AMERICAN CHEMICAL SERVICES


GRIFFITH, INDIANA

DATE: 7/26/90 FILE: 8-3202 SCALE: 1" = 50' FIGURE NO.6

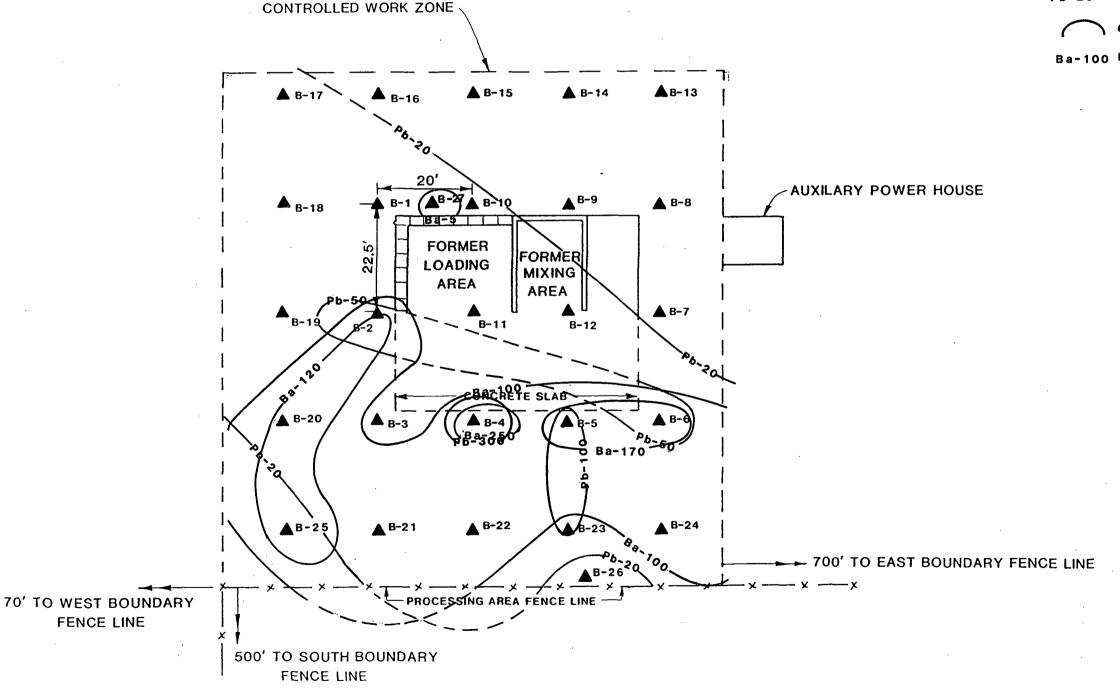
FIGURE 7 SOIL REMOVAL PLAN

NORTH BOUNDARY FENCE LINE LEGEND = Approximate Location of Sampling Station 1 Foot Removal of Soil CONTROLLED WORK ZONE 2 Foot Removal of Soil -AUXILARY POWER HOUSE LOADING MÍXING /AREA /B-12 CONCRETE SLAB **▲** B-5 SCALE, FT SUBSOIL SAMPLING STATIONS ▲ B-24 ▲ B-22\ ▲ B-25 ▲ B-23\ SOIL REMOVAL PLAN - 700' TO EAST BOUNDARY FENCE LINE AMERICAN CHEMICAL SERVICES, INC. PROCESSING AREA FENCE LINE -GRIFFITH, INDIANA 70' TO WEST BOUNDARY FENCE LINE Date: 7/13/90 File: 8-3202 500' TO SOUTH BOUNDARY Scale: AS SHOWN | FIGURE 7 FENCE LINE 1501 E. Main Street • Griffith, IN 46319 Griffith Phone: (219)924-6690 Chicago Phone: (312)375-9092

# FIGURES 8 TO 13 CONTOUR INTERVALS AND CONCENTRATION LEVELS FOR BARIUM AND LEAD

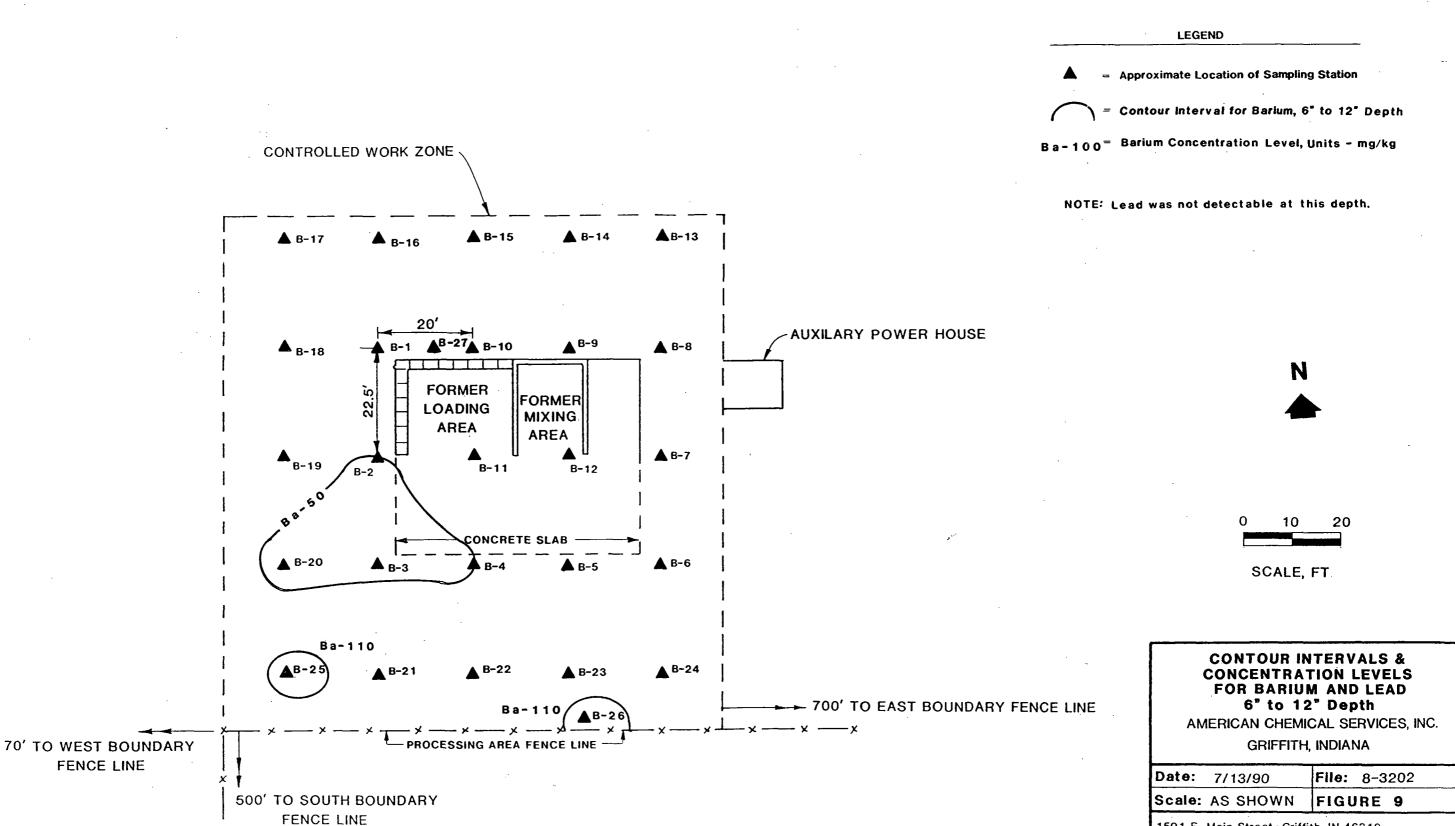


LEGEND


CONTOUR INTERVALS &
CONCENTRATION LEVELS FOR
BARIUM AND LEAD
0" to 6" Depth

SCALE, FT

AMERICAN CHEMICAL SERVICES, INC.
GRIFFITH, INDIANA


 Date:
 7/13/90
 File:
 8-3202

 Scale:
 AS SHOWN
 FIGURE
 8



NORTH BOUNDARY FENCE LINE

FENCE LINE



NORTH BOUNDARY FENCE LINE LEGEND = Approximate Location of Sampling Station = Contour Level for Lead, 12" to 18" Depth Pb-20 = Lead Concentration Level, Units - mg/kg CONTROLLED WORK ZONE = Contour Interval for Barium, 12" to 18" Depth Ba-100 = Barium Concentration Level, Units - mg/kg**AUXILARY POWER HOUSE FORMER FORMER** LOADING MIXING AREA AREA **A**<sub>B-19</sub> **CONCRETE SLAB** ▲ B-20 SCALE, FT CONTOUR INTERVALS & **CONCENTRATION LEVELS** FOR BARIUM AND LEAD 700' TO EAST BOUNDARY FENCE LINE 12" to 18" Depth AMERICAN CHEMICAL SERVICES, INC. PROCESSING AREA FENCE LINE -70' TO WEST BOUNDARY GRIFFITH, INDIANA FENCE LINE **Date:** 7/13/90 File: 8-3202 500' TO SOUTH BOUNDARY Scale: AS SHOWN FIGURE 10 FENCE LINE 1501 E. Main Street • Griffith, IN 46319 Griffith Phone: (219)924-6690

Chicago Phone: (312)375-9092

NORTH BOUNDARY FENCE-LINE -----LEGEND = Approximate Location of Sampling Station = Contour Level for Lead, 18" to 24" Depth Pb-20 = Lead Concentration Level, Units - mg/kg CONTROLLED WORK ZONE = Contour Interval for Barium,18" to 24" Depth Ba-100 = Barium Concentration Level, Units - mg/kg **AUXILARY POWER HOUSE FORMER** FORMER LOADING **MIXING** AREA ▲ B-20 SCALE, FT ₹Ba-8 **CONTOUR INTERVALS & CONCENTRATION LEVELS** FOR BARIUM AND LEAD 18" to 24" Depth 700' TO EAST BOUNDARY FENCE LINE AMERICAN CHEMICAL SERVICES, INC. 70' TO WEST BOUNDARY - PROCESSING AREA FENCE LINE -GRIFFITH, INDIANA **FENCE LINE** Date: 7/13/90 File: 8-3202 500' TO SOUTH BOUNDARY Scale: AS SHOWN | FIGURE 11 FENCE LINE 1501 E. Main Street • Griffith, IN 46319 Griffith Phone: (219)924-6690

Chicago Phone: (312)375-9092

NORTH BOUNDARY FENCE-LINE LEGEND = Approximate Location of Sampling Station = Contour Level for Lead, 24" to 36" Depth Pb-20 = Lead Concentration Level, Units - mg/kg CONTROLLED WORK ZONE = Contour Interval for Barium, 24" to 36" Depth Ba-100 = Barium Concentration Level, Units - mg/kg **AUXILARY POWER HOUSE ▲** B-8 FORMER LOADING MIXING AREA ▲ B-20 SCALE, FT CONTOUR INTERVALS & **CONCENTRATION LEVELS** FOR BARIUM AND LEAD 24" to 36" Depth 700' TO EAST BOUNDARY FENCE LINE AMERICAN CHEMICAL SERVICES, INC. 70' TO WEST BOUNDARY PROCESSING AREA FENCE LINE -GRIFFITH, INDIANA **FENCE LINE** Date: 7/13/90 File: 8-3202 500' TO SOUTH BOUNDARY Scale: AS SHOWN FIGURE 12 FENCE LINE 1501 E. Main Street • Griffith, IN 46319 Griffith Phone: (219)924-6690 Chicago Phone: (312)375-9092

NORTH BOUNDARY FENCE LINE ..... **LEGEND** = Approximate Location of Sampling Station = Contour Level for Lead, 36" to 42" Depth Pb-20 = Lead Concentration Level, Units - mg/kg CONTROLLED WORK ZONE Contour Interval for Barium, 36" to 42" Depth Ba-100 = Barium Concentration Level, Units - mg/kg**AUXILARY POWER HOUSE ▲** B-8 **FORMER** FORMER LOADING MIXING **AREA** AREA CONCRETE SLAB SCALE, FT **CONTOUR INTERVALS & CONCENTRATION LEVELS** FOR BARIUM AND LEAD 36" to 42" Depth 700' TO EAST BOUNDARY FENCE LINE ▲B-26 AMERICAN CHEMICAL SERVICES, INC. PROCESSING AREA FENCE LINE -GRIFFITH, INDIANA 70' TO WEST BOUNDARY FENCE LINE Date: 7/13/90 File: 8-3202 500' TO SOUTH BOUNDARY Scale: AS SHOWN FIGURE 13 FENCE LINE 1501 E. Main Street • Griffith, IN 46319 Griffith Phone: (219)924-6690

Chicago Phone: (312)375-9092